US009100283B2

a2 United States Patent

Kraus et al.

US 9,100,283 B2
*Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR SIMPLIFYING
DISTRIBUTED SERVER MANAGEMENT

(71)
(72)

Applicant: BladeLogic, Inc., Houston, TX (US)

Inventors: Thomas M. Kraus, Natick, MA (US);
Vijay G. Manwani, Needham, MA
(US); Sekhar Muddana, South
Attleboro, MA (US)

(73) BLADELOGIC, INC., Houston, TX

(US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 131 days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 13/856,089

Filed: Apr. 3,2013

(65) Prior Publication Data

US 2013/0232248 Al Sep. 5, 2013

Related U.S. Application Data

Continuation of application No. 10/414,959, filed on
Apr. 16, 2003, now Pat. No. 8,447,963.

Provisional application No. 60/453,308, filed on Mar.
10, 2003, provisional application No. 60/388,112,
filed on Jun. 12, 2002.

(63)
(60)
Int. Cl.

HO4L 12/24
GO6F 9/46

(51)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC oo HO4L 41/022 (2013.01); GOG6F 9/466
(2013.01); HO4L 12/2425 (2013.01);

(Continued)

(58) Field of Classification Search
HO4L 29/06; GOG6F 17/30067
713/1

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

10/1992 Kirouac et al.
12/1992 Galis et al.

(Continued)

5,155,847 A
5,175,800 A

FOREIGN PATENT DOCUMENTS

EP 0952521 A2 4/1999
EP 1091522 A2 4/2001

(Continued)
OTHER PUBLICATIONS

Bovet et al., “Understanding the Linux Kernel From /O Ports to
Process Management”, Oct. 2000, pp. 217-230.

(Continued)

Primary Examiner — Jason K Gee

(57) ABSTRACT

A method and system for managing a large number of servers
and their server components distributed throughout a hetero-
geneous computing environment is provided. In one embodi-
ment, an authenticated user, such as a IT system administra-
tor, can securely and simultaneously control and configure
multiple servers, supporting different operating systems,
through a “virtual server”” A virtual server is an abstract
model representing a collection of actual target servers. To
represent multiple physical servers as one virtual server,
abstract system calls that extend execution of operating-sys-
tem-specific system calls to multiple servers, regardless of
their supported operating systems, are used. A virtual server is
implemented by a virtual server client and a collection of
virtual server agents associated with a collection of actual
servers.

22 Claims, 14 Drawing Sheets

User's
Management
System 4
20 ;

NTMW2K

vaa | NTHE

Command Program
28A

Abstract
Cell

—
ot o

VSA Solaris
¥ 8 |
3

o
%

Virtual
Server

Configuratin
User Manager

Client
0

P}

10 258
Results

| Other Application
250

7

ey
atoy &

&7
" VSA Linux
#C | e

VSA AIX

B | 150

US 9,100,283 B2

Page 2
(51) Int.CL 6,049,671 A 4/2000 Slivka et al.
T04L 29/08 (2006.01) 6,052,720 A 4/2000 Traversat et al.
GO6F 11/14 (2006.01) 6,052,722 A 4/2000 Tag_hadoss
. 6,067,582 A 5/2000 Smith et al.
(52) US.CL 6,086,623 A 7/2000 Broome et al.
CPC ... HO4L 41/082 (2013.01); HO4L 41/0803 gggggg; : ;gggg gosent |
(2013.01); HO4L 41/084 (2013.01); HO4L 6101530 A §/2000 KZ;‘:E;I;& o
41/0806 (2013.01); HO4L 41/0853 (2013.01); 6,108,420 A 8/2000 Larose et al.
HO4L 41/0863 (2013.01); HO4L 67/1002 6,112,237 A 8/2000 Donaldson et al.
(2013.01); HO4L 67/1008 (2013.01); HO4L ggg;% 2 ggggg ;z?;g;nky
67/1014 (2013.01); GO6F 11/1471 (2013.01); 6:128:729 A 10/2000 Kimball et al.
GOG6F 2201/84 (2013.01); HO41L 67/1034 6,134,593 A 10/2000 Alexander et al.
(2013.01) 6,138,153 A 10/2000 Collins, III et al.
6138251 A 10/2000 Murphy et al.
, 6,151,643 A 11/2000 Cheng et al.
(56) References Cited 6,157,956 A 12/2000 Jensen et al.
6,163,796 A 12/2000 Yokomizo
U.S. PATENT DOCUMENTS 6167358 A 12/2000 Othmer et al.
24765 A /1993 Holmes ef al 6,167,567 A 12/2000 Chiles et al.
247, : 6,182,139 Bl 1/2001 Brendel
S30458 A 1994 Lubkineial Ol23 Bl 22000 Bigwsetal
5,359,730 A 10/1994 Marron 6195760 Bl 22001 Chung etal
5421,009 A 5/1995 Platt 6,202,206 Bl 3/2001 Dean et al.
5450,583 A 9;1995 Inada | 6,205477 Bl 3/2001 Johnson et al.
gf‘é?ﬁ; i }?/}ggg g;rcrizla; " 6,225,995 Bl 5/2001 Jacobs et al.
ATL : 6226679 Bl 52001 Gupt
5495610 A 2/1996 Shing et al. PN o
f 1 6,226,788 Bl 5/2001 Schoening et al.
?ggg"}‘éﬁ i lg/}ggg gt‘gsglj eJtraét " 6,229,540 Bl 5/2001 Tonelli et al.
1586, , Jr. etal. 6243396 Bl 6/2001 S
5.596.579 A 1/1997 Yasrebi 6319853 Bl 62001 Cassidy ot al
5.649.196 A 7/1997 Woodhill et al Poie assidy et al.
SepI6 A T D;‘;yl etal. 6,252,858 Bl 6/2001 Inoue
1650, 6,256,668 Bl 7/2001 Slivka et al.
5655081 A 81997 Bonnell ef al. Pohe fviasta
JOS08L A BIo0T Donnell e 6,259,448 Bl 7/2001 McNally et al.
5678002 A 10/1997 Fawcett ef al. 6200355 B1 T Eﬁ‘;sgkg{*;f;
5.694.546 A 12/1997 Reisman PPN '
5606895 A 12/1997 Hemphill etal 0208872 By 72001 Matsudaetal
3706,502 A 11998 Foley ct al. 6,286,038 Bl 9/2001 Reichmeyer et al.
3732275 A 371998 Kullick ef al. 6,286,041 BL 9/2001 Collins, Il et al.
3,742,829 A 4/1998 Davis et al. 6,286,042 B 9/2001 Hasselberg et al.
3.748.896 A 5/1998 Daly etal. 6,280,380 Bl 9/2001 Battat et al.
3752042 A 51998 Cole et al. 6,208,120 Bl 10/2001 Civanlar et al.
g’;g‘l"ggg i %ggg ggigid;te;ﬂ 6,304,549 Bl 10/2001 Srinivasan et al.
781, : 6,304,790 Bl 10/2001 Nakamura et al.
5,781,716 A 7/1998 Hemphlll etal. 6’314’565 Bl 11/2001 Kenneruertaa‘le.a
gggggg i }%ggg g/[aacﬁﬁglzl 6,324,576 Bl 11/2001 Newcombe et al.
832, : 6,330,586 Bl 12/2001 Yates et al.
gggggé; i H;}ggg gﬁ;ﬁwa etal. 6,332,163 Bl 12/2001 Bowman-Amuah
838, 6336,134 Bl 1/2002 Vi
5,845,077 A 12/1998 Fawcett 6345239 Bl 22002 Bowman-Amuah
5,845,090 A 12/1998 COlllIlS, III et al. 6,347,398 Bl 2/2002 Parthasarathy et al.
5870751 A 2/1999 Trotter 6349306 Bl 2/2002 Malik et al.
g’ggé’géf i é;}ggg %:r‘;’(ls etal. 6,356,863 Bl 3/2002 Sayle
909, 6381,628 Bl 4/2002 Hunt
5,913,040 A 6/1999 Rakavy et al. 6,389,126 Bl 5/2002 Bjornberg et al.
g’ggg’gg; i ;?iggg Is)ago et al~t | 6,389,464 Bl 572002 Krishnamurthy et al.
3044782 A 81999 Nebloctal, g’ggg’gi;g E} %883 ﬁa%erl etal.
5958012 A 9/1999 Battat et al. 6401119 Bl 6/2002 Fuss et al
gg%g?g i }%ggg ggﬁ’g :{al 6405219 B2 6/2002 Sacther et al.
974, : 6411961 Bl 6/2002 Ch
5987497 A 11/1999 Allgeier 6418535 B2 72002 Mohammed
g’ggg’gig i H;}ggg (L:‘f;ifgeetaL 6421719 BL 7/2002 Lewis et al.
6,003,075 A 12/1999 Arendt et al. 6,442,564 Bl 8/2002 Frey etal.
6,457,076 Bl 9/2002 Cheng et al.
6,009,274 A 12/1999 Fletcher et al.
Col1a88 A 12000 Li 6,460,070 Bl 10/2002 Turek et al.
ot in et al. 6,460,082 Bl 10/2002 Lumelsky et al
6,012,100 A 1/2000 Frailong et al. AOY, umelsky et al.
6,021,437 A 2/2000 Chen et al. 6,463,528 Bl 10/2002 Ra]akarunanayake et al.
6023464 A 22000 Woundy 6,473,794 Bl 10/2002 Guheen et al.
6,029,196 A 2/2000 Lenz 6,480,855 B1 11/2002 Siefeﬂ
6,035,264 A 3/2000 Donaldson et al. 6,502,096 Bl 12/2002 Siefert
6,044,393 A 3/2000 Donaldson et al. 6,502,131 B1 12/2002 Vaid et al.
6047321 A 4/2000 Raabetal. 6,505,245 Bl 1/2003 North et al.

US 9,100,283 B2
Page 3

(56)

6,516,337
6,516,347
6,519,600
6,535,227
6,546,392
6,546,553
6,549,944
6,577,614
6,594,723
6,598,090
6,604,238
6,618,366
6,633,907
6,658,426
6,662,221
6,686,838
6,708,195
6,718,379
6,725,451
6,728,748
6,732,269
6,732,358
6,738,908
6,751,702
6,754,707
6,763,361
6,775,830
6,801,949
6,802,061
6,816,897
6,816,903
6,816,964
6,826,604
6,834,389
6,880,086
6,964,034
6,983,317
6,986,133
7,013,462
7,054,924
7,076,567
7,124,289
7,131,123
7,149,789
7,231,436
7,237,002
8,447,963
2001/0034733
2002/0010773
2002/0010803
2002/0010910
2002/0019870
2002/0035501
2002/0059402
2002/0062334
2002/0065878
2002/0065926
2002/0069369
2002/0082818
2002/0082819
2002/0082820
2002/0082821
2002/0083146
2002/0083166
2002/0095522
2002/0107901
2002/0107954
2002/0133579
2002/0143904
2002/0154751
2002/0156831
2002/0156874
2002/0156894
2002/0158898
2002/0161861

References Cited

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
Bl

2/2003
2/2003
2/2003
3/2003
4/2003
4/2003
4/2003
6/2003
7/2003
7/2003
8/2003
9/2003
10/2003
12/2003
12/2003
2/2004
3/2004
4/2004
4/2004
4/2004
5/2004
5/2004
5/2004
6/2004
6/2004
7/2004
8/2004
10/2004
10/2004
11/2004
11/2004
11/2004
11/2004
12/2004
4/2005
11/2005
1/2006
1/2006
3/2006
5/2006
7/2006
10/2006
10/2006
12/2006
6/2007
6/2007
5/2013
10/2001
1/2002
1/2002
1/2002
2/2002
3/2002
5/2002
5/2002
5/2002
5/2002
6/2002
6/2002
6/2002
6/2002
6/2002
6/2002
6/2002
7/2002
8/2002
8/2002
9/2002
10/2002
10/2002
10/2002
10/2002
10/2002
10/2002
10/2002

Tripp et al.
Nakamura
Siefert

Fox et al.
Bahlmann
Hunt
Weinberg et al.
Cook et al.
Chapman et al.
Champlin

Lim et al.
Furukawa et al.
Spencer et al.
Poskanzer
Gonda et al.
Rezvani et al.
Borman et al.
Krishna et al.
Schuetz et al.
Mangipudi et al.
Baskey et al.
Siefert

Bonn et al.
Hsieh et al.
Richards et al.
Poskanzer
Matsunami et al.
Bruck et al.
Parthasarathy et al.
McGuire
Rakoshitz et al.
Suzuki et al.
Yamaguchi et al.
Glass

Kidder et al.
Snow

Bishop et al.
O’Brien et al.
Zara et al.
Harvey et al.
Chasman et al.
Suorsa

Suorsa et al.
Slivka et al.
Dalfo et al.
Estrada et al.
Kraus et al.
Prompt et al.
Meleis
Oberstein et al.
Crudele et al.
Chirashnya et al.
Handel et al.
Belanger

Chen et al.
Paxhia et al.
Hackney et al.
Tremain
Ferguson et al.
Ferguson et al.
Ferguson et al.
Ferguson et al.
Ferguson et al.
Dugan et al.
Hayko et al.
Hay

Ferguson et al.
Bernhardt et al.
Bair

Thompson, III et al.

Suorsa et al.
Suorsa et al.
Suorsa et al.
Hsieh et al.
Greuel

2002/0166001 Al
2002/0169870 Al

11/2002 Cheng et al.
11/2002 Vosseler et al.
2002/0194584 Al 12/2002 Suorsa et al.
2002/0198840 Al 12/2002 Banka et al.
2003/0023341 Al 1/2003 Sagawa et al.
2003/0078959 Al 4/2003 Yeung et al.
2003/0084104 Al 5/2003 Salem et al.
2003/0110259 Al 6/2003 Chapman et al.
2003/0135596 Al 7/2003 Moyer et al.
2003/0149756 Al 8/2003 Grieve et al.
2003/0158861 Al 8/2003 Sawdon et al.
2003/0229686 Al 12/2003 Kortright
2003/0233431 Al 12/2003 Reddy et al.
2003/0233571 Al 12/2003 Kraus et al.
2003/0233851 Al 12/2003 Yang et al.
2004/0226010 A1 11/2004 Suorsa
2005/0044544 Al 2/2005 Slivka et al.
2005/0246436 Al 11/2005 Day et al.
2007/0037095 Al 2/2007 Sasa

FOREIGN PATENT DOCUMENTS

WO 98/47057 A2 10/1998
WO 98/53397 Al 11/1998
WO 91/08542 Al 6/1999
WO 99/31584 Al 6/1999
WO 02/37212 A2 5/2002
WO 02/37262 A2 5/2002
WO 02/37273 A2 5/2002
WO 02/37282 A2 5/2002
WO 02/39257 A2 5/2002
WO 02/39313 A2 5/2002
OTHER PUBLICATIONS

Pawlowski et al., “The NFS Version 4 Protocol”, Proceedings of the
International System Administration and Networking Conference,
May 22, 2000, pp. 1-20.

Yang et al., “Design and Implementation of an Administration Sys-
tem for Distributed Web Server”, Proceedings of the 12th Systems
Administration Conference, LISA *98, Dec. 1998, pp. 131-139.
Venkatakrishnan et al., “An Approach for Secure Software Installa-
tion”, LISA, Nov. 3-8, 2002, pp. 219-226.

Traugott et al., “Why Order Matters: Turing Equivalence in Auto-
mated Systems Administration”, LISA, Nov. 2002, pp. 99-120.
Thomas et al., “UNIX Host Administration in a Heterogeneous Dis-
tributed Computing Environment”, Proceedings of the
16thInternational Conference on System Administration, 1996, pp.
43-50.

Symborski, C. W., “Updating Software and Configuration Data in a
Distributed Communications Network”, Proceedings of the Com-
puter Networking Symposium, Apr. 1988, pp. 331-338.

Staelin, C., “A Software Packaging Tool,” LISA, 1998, pp. 243-252.
Shaddock et al., “How to Upgrade 1500 Workstations on Saturday,
and Still Have Time to Mow the Yard on Sunday”, LISA, Sep. 1995,
pp. 59-65.

Sellens, J., “Filetsf: A File Transfer System Based on Ipr/Ipd”, 1995
LISA IX, Sep. 1995, pp. 195-202.

Schonwalder, J., “Specific Simple Network Management Tools”,
LISA 2001, Dec. 2001, pp. 109-119.

Sandnes, F. E., “Scheduling Partially Ordered Events in a Random-
ized Framework-Empirical Results and Implications for Automatic
Configuration Management”, LISA 2001, Dec. 2001, pp. 47-62.
Rudorfer, G., “Managing PC Operating Systems with a Revision
Control System”, LISA 1997, Oct. 1997, pp. 79-84.

Rouillard et al., “Config: A Mechanism for Installing and Tracking
System Configurations”, 1994 LISA, Sep. 1994, pp. 9-17.

Rodgers et al., “A Management System for Network-Sharable
Locally Installed Software: Merging RPM and the D Scheme Under
Solaris”, LISA 2001, Dec. 2001, pp. 267-272.

Riddle, P., “Automated Upgrades in a Lab Environment”, 1994 LISA,
Sep. 1994, pp. 33-36.

Ressman et al., “Use of Cfengine for Automated, Multi-Platform
Software and Patch Distribution”, LISA 2000, Dec. 2000, pp. 207-
218.

US 9,100,283 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Paynor, T., “Automating Infrastructure Composition for Internet Ser-
vices”, LISA 2001, Dec. 2001, pp. 169-177.

Osel et al., “OpenDist—Incremental Software Distribution”, LISA
1995, Sep. 1995, pp. 181-193.

Oppenheim et al., “Deployme: Tellme’s Package Management and
Deployment System,”, LISA 2000, Dec. 2000, pp. 187-196.
Oetiker, T., “Template Tree II: The Post-Installation Setup Tool”,
LISA 2001, Dec. 2001, pp. 179-185.

Moore et al., “The Coral Reef Software Suite as a Tool for System and
Network Administrators”, LISA 2001, Dec. 2001, pp. 133-144.
Miller et al., “Centralized Administration of Distributed Firewalls”,
LISA, 1996, Sep. 1996, pp. 19-23.

Mayhew, A., “File Distribution Efficiencies: cfengine vs. rsync”,
LISA 2001, Dec. 2001, pp. 273-276.

Luerkens et al., “Software Distribution to PC Clients in an Enterprise
Network,” LISA 1998, Aug. 1998.

Lockard et al., “Synctree for Single Point Installation, Upgrades, and
OS Patches”, LISA 1998, Dec. 1998, pp. 261-270.

Lipson, S., “Capital Markets Trading Floors, Current Practice”, LISA
1995, Sep. 1995, pp. 35-45.

Kimball et al., “Automated Client-side Integration of Distributed
Application Servers,”, LISA 1999, Nov. 1999, pp. 275-282.
Kaplan, H., “Highly Automated Low Personnel System Administra-
tion in a Wall Street Environment”, LISA 1994, Sep. 1994, pp.
185-189.

Holgate et al., “The Arusha Project: A Framework for Collaborative
Unix System Administration”, LISA 2001, Dec. 2001, pp. 187-197.
Hohndel et al., “Automated Installation of Linux Systems Using
YaST”, LISA 1999, Nov. 1999, pp. 261-266.

Hideyo, 1., “OMNICONF—Making OS Upgrades and Disk Crash
Recovery Easier”, LISA 1994, Sep. 1994, pp. 27-31.

Hemmerich, C., “Automating Request-based Software Distribution”,
LISA 2000, Dec. 2000, pp. 197-205.

Heiss, J., “Enterprise Rollouts with Jump Start”, LISA 1999, Nov.
1999, pp. 267-274.

Harlander, Dr. M., “Central System Administration in a Heteroge-
neous Unix Environment: GeNUAdmin”, LISA 1994, Sep. 1994, pp.
1-8.

Guttman, U., “Stem: The System Administration Enabler”, LISA
2002, Nov. 2002, pp. 75-81.

Gomberg et al., “A Comparison of Large-Scale Software Installation
Methods on NT and UNIX”, LISA 1998, Aug. 1998.

Garner, Robin “Pelican DHCP Automated Self-Registration System:
Distributed Registration and Centralized Management,”, LISA 2001,
pp. 257-266.

Gittler et al., “Morgan Stanley’s Aurora System: Designing a Next
Generation Global Production Unix Environment”, LISA 1995, Sep.
1995, pp. 47-58.

Futakata, A., “Patch Control Mechanism for Large Scale Software”,
LISA 1995, Sep. 1995, pp. 213-219.

Furlani et al., “Abstract Yourself With Modules”, LISA 1996, Sep.
1996, pp. 193-203.

Fulmer et al., “Autolnstall for NT: Complete NT Installation Over the
Network”, LISA 1998, Aug. 1998.

Finke, J., “Automating Printing Configuration”, LISA 1994, Sep.
1994, pp. 175-183.

Finke, J., “Automation of Site Configuration Management”, LISA
1997, Oct. 1997, pp. 155-168.

Evard, R., “Tenwen: The Re-engineering of a Computing Environ-
ment”, LISA 1994, Sep. 1994, pp. 37-46.

Evard, R., “An Analysis of UNIX System Configuration”, LISA
1997, Oct. 1997, pp. 179-193.

Silveira et al., “A Configuration Distribution System for Heteroge-
neous Networks”, LISA 1998, Dec. 1998, pp. 109-119.

Defert, E. F., “Managing and Distributing Application Software”,
LISA 1996, Oct. 1996, pp. 213-226.

Silva et al., “An NFS Configuration Management System and its
Underlying Object-Oriented Model”, LISA 1998, Dec. 1998, pp.
121-130.

Couch, A. L., “SLINK: Simple, Effective Filesystem Maintenance
Abstractions for Community-Based Administration”, LISA 1996,
Sep. 1996, pp. 205-212.

Couch, A. L., “Chaos Out of Order: A Simple, Sealable File Distri-
bution Facility for ‘Intentionally Heterogeneous’”, LISA 1997, Oct.
1997, pp. 169-178.

Cons et al., “Pan: A High-Level Configuration Language”, In Pro-
ceedings of LISA 2002, Nov. 2002, pp. 83-98.

Christoffel, J., “Bal—A Tool to Synchronize Document Collections
Between Computers,”, LISA 1997, Oct. 1997, pp. 85-88.

Carter, G., “Patch 32: A System for Automated Client OS Updates”,
LISA 1998, Aug. 1998.

Bell, J. D., “A Simple Caching File System for Application Serving”,
LISA 1995, Oct. 1996, pp. 171-179.

Beadnall et al., “CfAdmin: A User Interface for Cfengine”, LISA
2001, Dec. 2001, pp. 277-281.

Anderson, P., “Towards a High-Level Machine Configuration Sys-
tem”, LISA 1994, Sep. 1994, pp. 19-26.

Amatangelo, L. L., “Unleashing the Power of JumpStart: A New
Technique for Disaster Recovery, Cloning, or Snapshotting a Solaris
System”, LISA 2000, Dec. 2000, pp. 219-228.

Abbey, J., “The Group Administration Shell and the GASH Network
Computing Environment”, LISA 1994, Sep. 1994, pp. 191-203.
Aggarwal et al., “A Flexible Multicast Routing Protocol for Group
Communication”, Computer Networks, vol. 32, 2000, pp. 35-60.
Anonymous, “Windows Installer Service Overview”, 19 pages.
Retrieved from the Internet: <http://download.microsoft.com/down-
load/f/7/7/f717da84-£82d-4b90-a597-329e09032b0/WIS-Pro.doc>.
Bailey, “Maximum RPM—Taking the Red Hat Package Manager to
the Limit”, Feb. 17, 1997, 452 pages. Retrieved from the Internet:
<http://www.rpm.org/local/maximum-rpm.ps.gz>.

Bredin et al., “Market-based Resource Control for Mobile Agents”,
Proceedings of the second International Conference on Autonomous
Agents, 1998, pp. 97-204.

“Designs for Uncommitting and Install Plan Object”, IBM Technical
Disclosure Bulletin, IBM Corp., vol. 38, No. 7, Jul. 1, 1995, pp.
227-229.

Gilmore et al., “Secure Remote Access to an Internet Web Server”,
IEEE Network, Nov./Dec. 1999, pp. 31-37.

Hall et al., “Evaluating Software Deployment Languages and
Schema: An Experience Report”, Proceedings of the International
Conference of Software Maintenance, vol. 14, Institute of Electrical
and Flectronics Engineers, Nov. 16, 1998, pp. 177-185.

Hess et al., “A Unix Network Protocol Security Study: Network
Information Service”, Technical Report, A&M University, 1992, 5
pages.

Oracle Corporation, “Oracle Intelligent Agent User’s Guide”,
Release 8.1.7, Part No. A85251-01, Sep. 2000, 95 pages.

Perkins, “Mobile IP Joins Forces with AAA”, IEEE Personal Com-
munications, Aug. 2000, pp. 59-61.

Pidd et al., “Component-Based Simulation on the Web?”, Proceed-
ings of the 1999 Winter Simulation Conference, Dec. 1999, pp.
1438-1444.

Rabinovich et al., “RaDaR: A Scalable Architecture for a Global Web
Hosting Service”, Computer Networks, vol. 31, 1999, pp. 1545-
1561.

Shirey, “Internet Security Glossary”, Network Working Group, GTE/
BBN Technologies, The Internet Society, 2000, 2 pages.

Winer, D. “XML-RPC Specification”, Jun. 15, 1999, 7 pages. Docu-
ment available at: <http://www.xmlrpc.com/spec>, accessed Jan. 10,
2007.

Xu et al., “Networked Windows NT System Field Failure Data
Analysis”, Center for Reliable and High Performance Computing,
University of Illinois at Urbana-Champaign, 1999, 8 pages.

Yan et al., “The SIFT Information Dissemination System”, Dec.
1999, pp. 1-39.

Deraadt, “OpenBSD sshd.c cvs revision 1.17, (1999),pp. 1-29
Retrieved from the Internet:URL: http:/ / www.openbsd.org/ cgi-bin/
cvsweb/ src/usrbin/ ssh/ sshd.c?rev=1.1&contenttype=text/
x-cvsweb-markup>.

US 9,100,283 B2

Page 5
(56) References Cited Rightnour, T., “Clusterit version 2.0 (Archive)’, TAR,
XP002328731, 2001, pp. 1-30. Retrieved from the Internet:
OTHER PUBLICATIONS URL:http://www.garbled.net/download/ clusterit-2.0 tar.gz>.

OMG, “The Common Object Request Broker: Architecture and
Specification, Revision 2.0”, Jul. 1995, 30 pages.

Anonymous, “OpenBSD SSHD__ CONFIG(S) Manuel”,
OPENBSD.ORG, 1999, pp. 1-7, Retrieved from the Internet: URL:
http://www.openbsd.org/cgi-bin/man.cgi ?query=sshd__config>.

Anonymous, “LSF JobScheduler User’s Guide”, Platform Comput-
ing Corporation, Aug. 1998, pp. 1-138. Retrieved from the Internet
URL: http://www.urz.uniheidelbel’g.deL1sf3.2 }12dflisusers~df>.
Anonymous, “OpenBSD SSH(1) Manual Page”, OPENBSD.ORG,
1999, pp. 1-9. Retrieved from the Internet: URL: http://www.
openbsd.org/ cgi-bin/ man.cgi?query=ssh>.

US 9,100,283 B2

Sheet 1 of 14

Aug. 4, 2015

U.S. Patent

&
I DI
[age
Ay ¥EA
b
e ._ @ @.w.m [
2% uopestddy Jauc
4%
nﬂ aq\
%
S 2%
o) 5T B
XUy YEA RD, synea
@0,@0%” e 453
Ve, Y. i saBeuBpy
Awmw Mcwmu & uonganByuen
PR
HE RN
12 ¥ 180
I %mx,m%ﬁ RISy
a5t EVE Sl -
SLBIOSR wapa g K Y52 -
e WEB0Id PUBLILIDD
&/ J‘m
16
I s
‘\ IU
e \.\.A QN \\\\\.\\\.
Y5l MM% 4 wolsAg EMMWHU
MIM LN v misiebeuey

slasn

3
Josn

US 9,100,283 B2

Sheet 2 of 14

Aug. 4, 2015

U.S. Patent

§¢
siuely
BABE

ENUA O

¢ DIA

SF
IBRIusLBl g

17
JoydAious

i
{ougry
I0yBRUBISU

IBARIFY

n\ll\\\
-

gD Jsamg [enuiaT

Heo
LBISAG
PEHSGY

US 9,100,283 B2

Sheet 3 of 14

Aug. 4, 2015

U.S. Patent

£ DI

0e

[£2
3 (1ersag @bz -
OSABL ool J0ID8KY ¥g
‘ fo ypny
ﬂ = 5% &
8 08 EE h b8
" o ; o e 1BddEN e JBUNUBDL e
iowesuBy] IBTLOUIY iojeucsiediyg fiquep) 1850 iowdiinen
&
25
Jelfjuap
SHICY
&
[P
IBAMEDEY
e
vEe AHV

1usly leasg s —

D6 Wt

US 9,100,283 B2

Sheet 4 of 14

Aug. 4, 2015

U.S. Patent

vy OIA

ozy 438" L Sjenuelsul
ya fieny wesdg
OLPGELET L pegsoy sapoey
4
aob g31s” L uoheluessidey v epineid

US 9,100,283 B2

Sheet 5 of 14

Aug. 4, 2015

U.S. Patent

07y davg Bugenueisyy

p——

§ DI

\\\
s

925 daLs

SUNSEM LGNS
Buinienay

w

¥y awwmﬁi e LWBIBAS DRSOy
Butnusues |
&
77 aaLs LA 1enes 1ebie) e Buknusp;

US 9,100,283 B2

Sheet 6 of 14

Aug. 4, 2015

U.S. Patent

9 DIA

I R U
T T T Iy YYYY

.

ylowspo; ZodH@emsp]
1804 [BSO] LBiG

precopisoyiEan] Zziqieupe; won aiBojepelq eb zzigeypel VOOLTY <
1504 (B0} UIBWO

PIBoo)IsoylRC0! LZIgEEYRel wos oiojepeg el | zIgjeupss LOULEL >
£3g

SISOLYDIS/ L ZIEURSL/ SISOUOIe) L ZIGIBYPSY! Hip Wlowap) ZoxiH@ws.ep]

US 9,100,283 B2

Sheet 7 of 14

Aug. 4, 2015

U.S. Patent

L DId

0ZL
ydeis
Aouspusdag
¥
iy
Sl JRjBluBIEd
Y
-
08 X 574
DSAOL 4 ST) p (] G0ZSOUIT FHy pefold
UCHONISL Buuos) o s8)i4 Unioesuesf
i \.\\\1
| I <.
|
. T e T A\
00Z < “—
sbeypry
uonRSUELL a—— /
gee
Jafeuey uonemBiyuon

U.S. Patent Aug. 4, 2015 Sheet 8 of 14 US 9,100,283 B2

Check Prerequisite | -7\~ STEF 8O0

Configuration

X Manager 258
Check for
7 STEP 81
Sequence information L7 e S v
Ship to VSA s STEP 8IS
via V8C
v
VSA 354
Substitute oy s STERP 820
Parameters 1 -
- TEP 82
Dryrun 7 AV 823
o STEP 835
v i Update Undo Log
. Executs
instructions //AL 7 STER 840

| v

Exscute " Update Undo
Undo ’ Log

if grror p—

FIG. 8

US 9,100,283 B2

Sheet 9 of 14

Aug. 4, 2015

U.S. Patent

6 ‘DI

0v6 d31s -

sucesdn
anoexd

4

086 £318 7

Jeniag pbiey
0] SIBOIUNWILDS

£

026 4318 <

SRNHRA Joinlieied
fyadg

&

L6 4318 <

sisniag wfiey
Apisp]

H

006 9318 <]

sucneadr sBusyn
Agoads

US 9,100,283 B2

Sheet 10 of 14

Aug. 4, 2015

U.S. Patent

01 "DIAd

[
sbedoed
UDioBSUR) |
oL
I
e A 0E0l - gi01
0s0l 0wl 0701
i B z. {BpoK & . syBids g
JOIBU0D Jolelecuiog BOUSIBIOY IBRIGI8Y
k
\
0GCH
IBEMOIE
&
\
Y
\
ISR
gse

safieusyy uonenBuuos

—

US 9,100,283 B2

Sheet 11 of 14

Aug. 4, 2015

U.S. Patent

Il °DIA

524l LS)

WBUGT

-

0744 dALS -

aipdwion

GEEL 318 7 -

Lo

oysdeug

OLLL d3LS)

1BAIE P10
waEy

£

§0LL J3LS 7

doyguap
eeg

4

00LL d3LS 7

SEMIIG

US 9,100,283 B2

Sheet 12 of 14

Aug. 4, 2015

U.S. Patent

I "DIA

ati erel ovel Geel geet
Aunoeg FOUBLLICHS S Anaeeay Aoedeny | siomieN
TE . LACO X ”.\u\\u
oo.. ~ .».n K . \\\\ ,./ \\\\.\\\\s\\xﬂ\\ J
N o x\.\\.\.\j - - .\
\\\\\\// /
e \ /
..... . ~ \
N :..,,..,..:h.uw/ /
Ringng /
gLel
IBABS 84 JBALRS GEAN J8aIeg ddy
IS . gez | Siel | OiEn
///// \\\\\ BrEg 1B8MeT 184618G
~ le R drdy
0oCL
seidweg 4
00zt
gjgjdwiay

T <

e

sebeuepy uvoneinbyuon

US 9,100,283 B2

Sheet 13 of 14

Aug. 4, 2015

U.S. Patent

SIRJBLUEIE 4
18n9% 8a

0581 Aunoeg 4 A

Siasueied
isrieg ddy

Giro L SOUBULOUS - Al

£ DIA

SiejBleEd
JBAIBS OO

Ove) Aligeleny 4 9
geet Aioedern - 1

A
2HIMBT
JBUIDIEND

d0iel
abeiayoig

Giee

BUUQ

AEE L HIOMIBN A 1
O0ZEL o
0 100y
a .
244
BB e
JERSETN
S-S voZLl »
saieg

(771 sieAes ag

YOLZE
sajEg

017] sioneg ddy

e 2itd

D5LEL
{synedy)
DEpIA
JSREIBHAN
JEUIRI

geizl
{(sLoedy)

N

(N T
Yo jsuBNuf

,/wf..\r..\r...y .

dididiiH
YR

vaidi
(s
IBUBL

GLEL BIBAISE GOM

giLel /
HEM, Bl A

\\..,\\}.;\;,,
GoElL

o
y jeumlY
//:.\}:\{.\Y...\

“K_HL_,)/

US 9,100,283 B2

Sheet 14 of 14

Aug. 4, 2015

U.S. Patent

vl DIA

{gs): mﬁ_.cm?.ﬂgg; wﬁumn:u SERED

H
i

i

SHANNS RANESHMNNS UDRSAHNG WUSESPNGS

WEAIANAS

2004015 RN 1SIRNNE XIBIANNS SSIANNG NSIANNS

SEMARITG WRIAANMG
HAAHNNT
BRERRNG
13SAANNIS NEIARNNS
RSIMNNG
NSBAME

SIAANNG WSIMNNS
UBLLAANMIS

NPBLMNNS “CRAANNS TADAMNAR
UAANNE WESANNE ISIAMNNE
LALUAANOS THSIRANNS RIS TSIAMNNS .ﬁﬁﬁsm

AN ISIANNG

XBUPAMNAS SETIANNG
BUAEAANDS IUIMBNA HERAANND TOMANDS IMRANSS

HIBIRANNS
S MEFUPANTG ' FRUAAINEG
TSNS

T
WLBB80Y F

PLEFEDR o
10-pig80; -
2069880+
LD-5080
#0-L28801
105288 L

iftx4s:d)
16-D788C 1
03-B088E
20908851
v§-£Z488
78 mﬂu?

NF(Q"\
(ORI
G1-768801
14609805
0780920 L -
2059580

YOIBING WHISBIA K

PRIV
TIBENTIA 3
LSEHATU o

o LEshs &
(B i
safieNied g8 -

wislshs o4

nsspeypa .w.
§s 2.&32

mz&% @

i 8t

US 9,100,283 B2

1
METHOD AND SYSTEM FOR SIMPLIFYING
DISTRIBUTED SERVER MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 10/414,959 filed Apr. 16, 2003, entitled METHOD AND
SYSTEM FOR SIMPLIFYING DISTRIBUTED SERVER
MANAGEMENT, now U.S. Pat. No. 8,447,963, which
claims priority to and the benefit of U.S. Provisional Patent
Application Ser. No. 60/388,112 filed Jun. 12, 2002, entitled
METHOD AND SYSTEM FOR SIMPLIFYING SERVER
MANAGEMENT, and U.S. Provisional Patent Application
60/453,308 filed Mar. 10, 2003, entitled METHOD AND
SYSTEM FOR SIMPLIFYING SERVER MANAGEMENT,
the entire disclosures of which are hereby incorporated by
reference.

TECHNICAL FIELD

This invention relates to the field of server management
and, more particularly, to the management of servers in a
heterogeneous computing environment.

BACKGROUND INFORMATION

Information Technology (IT) administrators are facing
new challenges due to a significant increase in the number of
servers in an enterprise’s [T infrastructure and the adoption of
distributed electronic business applications. These challenges
have resulted from: (1) a transition from client-server to Inter-
net-based architectures, resulting in frequent interactions
between different types of servers; and (2) the use of compo-
nent application servers, such as J2EE (JAVA 2 Platform,
Enterprise Edition) and .NET, to generate components, tools,
systems, and complex application models. Faced with these
challenges, an I'T administrator may need to juggle hundreds
of'incompatible software application configurations and track
thousands of server components for the thirty to forty servers
he or she manages.

Currently available configuration tools are inadequate to
manage a large number of software application configuration
and server components across multiple servers in a heteroge-
neous computing environment. To manage and configure het-
erogeneous servers, particularly in the complex business
computing infrastructure, many IT administrators use enter-
prise systems management (ESM) products offering moni-
toring tools to automate problem identification across mul-
tiple servers. However, these monitoring tools do not provide
a centralized management system with a centralized configu-
ration database, which can centrally keep track of current
server components and their interdependencies across the
different servers.

In addition, these ESM products provide little or no help in
correcting or configuring server components in a heteroge-
neous computing environment. For UNIX and LINUX oper-
ating system-based servers, despite the open-source and
internally developed tools and scripts to handle simple con-
figuration changes to J2EE configurations, neither the tools
nor the scripts can be easily extended to address complex
distributed applications.

MICROSOFT WINDOWS-based operating system serv-
ers are even more difficult to correct and configure than UNIX
and Linux operating system based servers, due to a large
number of server components having complex interdepen-
dencies. Although system management tools are available

20

25

35

40

45

55

2

from Microsoft, they have been designed to target only small-
scale homogenous MICROSOFT WINDOWS-based com-
puting environments, and not the large and heterogeneous
computing environment supporting multiple operating sys-
tems that most I'T administrators have to manage.

Because of the inadequacies in currently available man-
agement tools, significant portions of any server configura-
tion change operations have to be made manually by the IT
administrator for each server. Accordingly, human errors can
occur from these manual change operations, and from manual
monitoring and tracking of each server’s configuration,
resulting in frequent server misconfigurations and system
downtime.

SUMMARY OF THE INVENTION

To alleviate this situation, systems and methods according
to the invention can be used to manage a large number of
servers and their server components distributed throughout a
heterogeneous computing environment.

In one embodiment, an authenticated user, such as a IT
system administrator, can securely and simultaneously con-
trol and configure multiple servers, supporting different oper-
ating systems, by implementing a virtual server from the
user’s management system. In one embodiment, the user is
authenticated by an operating-system-user-context-inherit-
ance model or standard authentication protocols, such as a
public key protocol, a Kerberos protocol, or a shared secret
protocol.

In some embodiments, a “virtual server” model is used. A
virtual server is an abstract model representing a collection of
actual target servers. To represent these multiple physical
servers as one virtual server, the abstract system calls that
extend execution of operating-system-specific system calls to
multiple servers regardless of their supported operating sys-
tems are used. A virtual server is implemented by a virtual
server client and a collection of virtual server agents associ-
ated with a collection of actual servers. The virtual server
client may be implemented by a network-aware code library,
such as “libnc,” which is implemented as a network-aware
version of the “libc” library. In another embodiment, the
virtual server client is a library, such as “libnc.”

The user’s management system contains a software appli-
cation system, such as a command program (also referred to
as a command line interface) or a configuration manager,
which generates abstract system calls to request services to be
performed on the target servers. In one embodiment, the
virtual server client receives the abstract system calls and
instantiates the abstract system calls in a thread-safe manner.
The thread-safe instantiation ensures simultaneous execution
of the system calls on multiple target servers, while sharing
the single virtual server client among these multiple target
servers and their associated virtual server agents. In the
instantiating process, the virtual server client identifies the
target server(s) and their associate virtual server agent(s) to
receive the abstract system calls. In one embodiment, the
virtual server client identifies the target server(s) in response
to a server identifier included in the abstract system call.
Examples of the server identifier include a host name speci-
fied in a path and a network address. The server identifier may
also be inferred from a group of servers to which the target
server belongs.

Also, in the instantiating process, the virtual server client
transmits the abstract system calls to the identified virtual
server agent for execution on the target server. Before the
transmission of the abstract system call, the virtual server
client may encrypt the abstract system calls using standard

US 9,100,283 B2

3

encryption protocols, such as the SSL protocol, the Kerberos
protocol, or the shared secret protocol, to secure communi-
cation between the virtual server client and the virtual server
agent. In addition, before the transmission of the abstract
system call, the virtual server client may specify priority,
CPU utilization, and/or memory utilization of the abstract
system call on the identified target server.

After the virtual server agent receives the abstract system
calls from the virtual server client, the virtual server agent
translates the abstract system call into an operating system-
specific system call, so that system call can be executed on the
operating system-specific target server. Before translating the
abstract system call, in one embodiment, the virtual server
agent identifies the source host of the user’s management
system to determine the encryption protocol used on the
abstract system call. The virtual server agent decrypts the
abstract system call after learning about the encryption pro-
tocol used by the virtual server client. From the decrypted
abstract system call, the virtual server agent identifies the
authenticated user. In addition, the virtual server agent con-
tains software modules that can map the authenticated user
(presented user) to another user (effective user) and locate a
corresponding local user identity on the target server for the
effective user, and impersonate the effective user as a local
user on the target server associated with the virtual server
agent. In one embodiment, if the effective user is not identi-
fied as a recognized local user on the target server, the user is
designated as a local guest user on the target server. The
virtual server agent further restricts the user’s access to the
target server through a software module that limits the user to
performing predetermined actions or accessing predeter-
mines resources on the target server, based on a role-based
access control model and/or access control lists (ACLs).

The translated system calls are then executed on the target
server in a thread-safe manner and the results of the execution
are transported from the virtual server agent to the virtual
server client. In one embodiment, the virtual server agent
maintains an audit log to record the names of users and the
abstract system calls executed on the target server.

In another embodiment, the application system can aggre-
gate multiple abstract system calls into a single high-level
abstract system call, which in turn is transported to the virtual
server client. After receiving the high-level abstract system
call, the virtual server client disintegrates the high-level
abstract system call into the original multiple abstract system
calls and instantiates these original abstract system calls indi-
vidually. Accordingly, the virtual server agent receives the
individual abstract system calls for execution on the associ-
ated target server.

In yet another embodiment, after receiving the high-level
abstract system call from the application program, the virtual
server client instantiates the high-level abstract system call as
a whole. Thus, the identified virtual server agent receives the
high-level abstract system call, rather than the original mul-
tiple abstract system calls. The virtual server agent in turn
translates the high-level abstract system into the individual
operating system-specific system calls to be executed on its
associated target server.

In another embodiment, the virtual server modifies an
existing non-distributed application supporting only one spe-
cific operating system to function as a network-aware appli-
cation that is applicable across servers or devices supporting
different operating systems by substituting a non network-
aware system call with an abstract system call. In one exem-
plary embodiment, a non-distributed Unix shell program can
function as a network-aware application program that is
adaptable across multiple servers or devices supporting non-

10

15

20

25

30

35

40

45

50

55

60

65

4

Unix operating systems. In another exemplary embodiment,
non-distributed scripting languages, such as Perl and Python,
can function as network aware-application programs that are
applicable across multiple servers and devices supporting
different operating systems.

In another embodiment, software configuration compo-
nents (also referred to as server objects) having intricate inter-
dependencies with other server components can be defined
and characterized under a single unified system. Through this
unified system, fine-grain application change operations can
be uniformly and simultaneously implemented across the
heterogeneous servers, rather than implementing different
application change operations for each of the servers indi-
vidually.

In yet another embodiment, a centralized management sys-
tem can automatically track changes, configure, and manage
multiple servers to provide compliance in accordance with
pre-defined policies by incorporating the methods and sys-
tems described above.

BRIEF DESCRIPTION OF THE DRAWINGS

Inthe drawings, like reference characters generally refer to
the same parts throughout the different views. Also, the draw-
ings are not necessarily to scale, emphasis instead generally
being placed upon illustrating the principles of the invention.

FIG. 1 is a block diagram depicting an embodiment of a
system for managing multiple servers in a heterogeneous
computing environment.

FIG. 2 isablock diagram depicting a virtual server client in
accordance with an embodiment of the invention.

FIG. 3 is a block diagram depicting a virtual server agent in
accordance with an embodiment of the invention.

FIG. 4 is a flowchart depicting an embodiment of a method
for receiving and executing a system call from an application
program.

FIG. 51s aflowchart depicting the details of instantiating an
abstract system call in one embodiment of the method of FIG.
4.

FIG. 6 is a screen shot of an embodiment of a system
implementing the method of FIG. 4.

FIG. 7 is a block diagram depicting an embodiment of a
system for executing and undoing distributed server change
operations in a transaction-safe manner.

FIG. 8 is a flowchart depicting an embodiment of a system
for executing and undoing distributed server change opera-
tions in a transaction-safe manner.

FIG. 9 is a flowchart depicting an embodiment of a method
for executing and undoing distributed server change opera-
tions in a transaction-safe manner.

FIG. 10 is a block diagram depicting an embodiment of a
system for configuring multiple servers in a heterogeneous
computing environment.

FIG. 11 is a flowchart depicting an embodiment of a
method for configuring multiple servers in a heterogeneous
computing environment.

FIG. 12 is a block diagram depicting an embodiment of a
system for managing server objects as described in a embodi-
ment of the invention.

FIG. 13 is a block diagram depicting an exemplary
embodiment of the system of FIG. 12.

FIG. 14 is a user interface display in an embodiment for a
system implementing the method of FIG. 11.

DETAILED DESCRIPTION

Referring to FIG. 1, a user 10, such as a system adminis-
trator, manages a number of servers 15A, 15B, 15C, 15D,

US 9,100,283 B2

5

generally 15, which are computers, each of which can be of
the same or of different types than the other servers 15. The
servers 15 are typically server-class general-purpose comput-
ers, which provide services (e.g. software applications and/or
data) to other computers via one or more computer networks.
For example, the servers may be application servers, routers,
firewalls, load balancers, storage controllers, or a combina-
tion of these or other computers or network devices.

Examples of application servers are databases, such as the
ORACLE database from Oracle Corporation of Redwood
City, Calif. or other business applications. Application serv-
ers may also include web servers, such as the Apache web
server from the Apache Foundation, and Internet Information
Server (IIS) from Microsoft Corporation of Redmond, Wash.
In addition to these examples, other programs can be pro-
vided by the servers 15. It should be understood that as used
herein, the term “server” is not limited to server-class com-
puters or application servers, but refers generally to comput-
ers on which the embodiments of the invention operate, which
may include other types of computers or network devices.

As shown, each of the servers 15 may use a different
operating system. For example, server 15A uses
MICROSOFT WINDOWS (e.g., WINDOWS NT and WIN-
DOWS 2000), available from Microsoft Corporation of Red-
mond, Wash.; server 15B uses SUN SOLARIS, available
from Sun Microsystems, Inc. of Santa Clara, Calif.; server
15C uses RED HAT LINUX, available from Red Hat, Inc. of
Durham, N.C.; and server 15D uses IBM AIX, available from
IBM of Armonk, N.Y. It will be understood that this is just one
example of the operating systems that may be used on the
servers 15, and other combinations and operating systems
may be used on the servers 15 in accordance with embodi-
ments of the invention. One of the benefits of the system is its
ability to operate in an environment having heterogeneous
servers.

In one embodiment, the user 10 manages the servers 15 via
a management system 20. The management system 20 is
typically a server-class computer that provides the user 10
with an ability to manager servers 15 in a consistent manner
through use of application programs 25. The management
system 20 may be one of the servers 15, or any server-class
computer that can communicate with the servers 15 over a
network. Any of the target servers 15 can be designated as the
management system, as long as the designated server
includes appropriate application programs and software mod-
ules to manage remotely located servers.

Application programs 25 in the management system 20 can
include one or more of a command-line shell program 25A
and related programs for executing shell commands (e.g.,
UNIX shell commands such as 1s, my, rm, etc.), a configura-
tion manager 25B for managing system configuration, and/or
other applications 25C. The application programs 25, which
in some implementations are “network-aware,” communicate
abstract system calls to a virtual server client 30, which in turn
communicates the abstract system calls to the servers 15 that
are the target(s) for execution of the operations requested by
the abstract system calls. Advantageously, through use of the
abstract system calls, the “network-aware” applications are
able to request services from heterogeneous servers support-
ing different operating systems without having to modify
their architecture to support each of the different operating
systems.

For example, the user 10 enters commands, such as UNIX
shell commands, to the shell program 25A via a command
line interface. Commands can be entered, for example, to
distribute files, directories, software packages, and patches to
the target servers 15. Commands can also be entered to edit

20

25

30

35

40

45

55

6

configuration files of the target servers 15. In addition, com-
mands can be entered to remotely reboot the target servers 15,
and stop and start change operation on the target servers 15.

For example, in one implementation, the Unix shell com-
mand “Is,” which requests a server computer to list a directory
of files, may be modified to be used with the user’s manage-
ment system 20 and the virtual server client 30 to list a
directory of files from any of the target servers 15. From the
user’s 10 perspective, the “Is” command is used in the normal
manner, except that the user 10 can identify a target server 15
for the command in a path associated with the command. For
example, if the target server 15A is named “targetserverl,”
the user 10 may enter the command “Is//targetserverl/path/”
to list the files in the specified path on the target server 15A.

To implement this 1Is command of the shell program 25A on
the user’s management system 20, the shell program 25A
translates the system calls called by the “ls” command into
one or more abstract system calls. These abstract system calls
are sent to the virtual server client 30, which in turn sends the
abstract system calls to appropriate target servers 15, in this
case, the target server 15A. After execution of the command
on the target servers 15, the results are communicated back to
the user 10 via the application programs 25 and the virtual
server client 30.

Other programs can be made “network aware”. For
example, in some implementation, script interpreters, such as
interpreters for the Perl and Python scripting languages can
be modified to work with the virtual server client 30. Gener-
ally, selected system calls made by an application program
are translated into abstract system calls, which are commu-
nicated through the virtual server client 30 to the servers 15.

In addition to providing shell commands and other appli-
cation programs, the management system 20 may include a
configuration manager 25B. In one embodiment, the configu-
ration manager 25B is used to configure one or more of the
servers 15. The configuration manager is a software applica-
tion program that implements server change operations that
are in turn translated into the corresponding operating system
specific commands on the target servers 15.

In one implementation, an application program 25 directs
abstract system calls to specific target servers 15. In another
implementation, the application program 25 can also direct
abstract system calls to a group of servers. A group of servers
can be pre-defined or dynamically defined based on attributes
such as operating systems, capacity, I[P address ranges, and
installed applications. For example, the application program
25 can direct an abstract system call to a group of servers,
consisting of a subset of servers 15 running the Linux oper-
ating system. Application program 25 thus can deploy a com-
mand onto a server in this group without specifying a particu-
lar server in the subset. In this way, the application program
25 does not need to keep track of each server, not determine
which servers have sufficient capacity or features to run the
program; rather, the application program 25 can deploy com-
mands (or change operations) to a predetermined group, and
the virtual server client 30 decides which specific server
should run these operations.

The virtual server client 30, which may be included in the
management system 20, presents the servers 15 to the appli-
cation programs 25 as a single “virtual server” on which
system call operations can be executed. The virtual server
client 30 is implemented by a software library, which in one
implementation is roughly analogous to the C library, libe.
The application programs 25 can be statically or dynamically
linked to the virtual server library, which is called libne. In
one embodiment, non network-aware application programs
25 are converted to network-aware programs by replacing

US 9,100,283 B2

7

calls to the libc library with equivalent calls to the libnc
library, which provides abstract network-aware system calls.

In an alternative embodiment, the virtual server client 30
may be implemented as part of an operating system. For
example, the operating system running the user’s manage-
ment system 20 can receive abstract system calls and com-
municate them to the remote target servers 15. Accordingly,
for purposes of executing an abstract system call a target
servers 15, the source of the abstract system call is immate-
rial.

In some embodiments, the virtual server client 30 commu-
nicates with the servers 15 through virtual server agents 35
associated with the servers 15, which will be described in
detail below. The virtual server client 30 communicates with
virtual server agents 35 to present the multiple physical target
servers 15 as a single virtual server to the application pro-
grams 25. As an abstract representation of a collection of the
physical servers 15, the virtual server intercepts the abstract
system calls via the virtual server client 30 and routes the
abstract system calls to the virtual server agents 35.

When the virtual server client 30 receives an abstract sys-
tem call from an application program 25, the virtual server
client 30 checks the abstract system call to determine whether
this system call is a local call or a remote call. If the abstract
system call is a local call, then the operating system running
the management system 20 executes the system call locally. If
the abstract system call is determined to be a remote call, the
virtual server client 30 sends the abstract system call to a
virtual server agent 35 associated with a target server 15 viaa
message protocol. For example, when an “ropen” abstract
system call, representing a remote file open command, is
received by the virtual server client 30, the data representing
the “ropen” command and parameters associated with the
“ropen” command are sent to appropriate virtual server
agents 35. The target-servers 15 for a system call are identi-
fied by the user 10 or the application programs 25. The virtual
server client 30 identifies the target servers 15 from their
virtual server agents 35 and determines where the system call
should be directed.

The virtual server agents 35 receive abstract system calls
from the virtual server client 30 and prepare the abstract
system calls for their associated target servers 15. When the
virtual server client 30 determines to which virtual server
agents an abstract system call should be directed, each of the
virtual server agents 35 receives the abstract system call. As a
part of preparing the abstract system call for the associated
target servers 15, the virtual server agents 35 provide security
measures to ensure that the user 10 is authorized to access the
target servers 15, and that the virtual server agent 35 controls
the user access, as provided by the associated target server 15.
Once the user 10 is authorized, the virtual server agent 35
translates the abstract system call into an operating system
specific call directed to its associated target server 15. The
target server 15 executes the abstract system call and returns
the results back to the virtual server agent 35, which in turn
sends the results back to the appropriate application programs
25 via the virtual server client 30.

In one embodiment, the virtual server agents 35 (also
referred to as Remote System Call Daemon or RSCD agents)
are software modules attached to their corresponding target
servers 15. In another embodiment, the virtual server agents
35 are software modules that are not attached to their corre-
sponding target servers 15, but are in communication with
their associated remotely located target servers 15.

In some embodiments, instead of acting as a messenger
that sends an abstract system call to a specific target server 15,
one of the virtual server agents 35 can represent a group of

10

20

40

45

55

8

physical servers. Thus, if the same command needs to be
executed on multiple servers, these servers can be aggregated
into a group, represented by a single virtual server agent 35,
so that appropriate system calls can be made to a group of
servers simultaneously via that virtual server agent 35.

Generally, abstract system calls may include all types of
system calls including file system calls, operating system
calls, and the like. An abstract system call typically is imple-
mented as a modification of an analogous standard operating
system specific call. For example, the abstract system call
“ropen” is analogous to a standard system call “open,” which
opens a file on a server.

With minor modifications to an application program’s
source code, any application program can make operating
system agnostic abstract system calls. By changing the sys-
tem calls to abstract system calls, any generic application
program can be made into a network aware-application that
can operate transparently across servers supporting different
operating systems.

In one embodiment, only the system calls that are appli-
cable to all of the target servers 15 can be modeled as abstract
system calls. For example, if the target servers 15 include
UNIX-based servers, it may not be possible to model a system
call to update a registry as an abstract system call, since a
registry, which is a Windows specific object, does not exist
and has no relevance for UNIX-based server platforms.

Referring to FIG. 2, in one embodiment, the virtual server
client 30 includes various software modules which imple-
ment its functionality. These modules include a receiver 40
that receives an abstract system call made by an application
program 25, and forwards the abstract system call to an
instantiator 42. The receiver 40 is a software module that acts
a messenger between the software application programs 25
and the instantiator 42. In one embodiment, the receiver 40
receives the abstract system call from one of the software
application programs 25 used by the user 10. The receiver 40
then forwards the abstract system call directly to the instan-
tiator 42. In another embodiment, the receiver 40 may receive
standard operating system specific system calls from an
application program 25. The receiver forwards such standard
system calls to the instantiator 42 for the instantiator 42 to
decide to where the system calls should be directed.

The instantiator 42 instantiates abstract system calls in a
thread-safe manner. The thread-safe instantiation shares a
single resource between multiple operations without requir-
ing changes to the architecture of the application programs
requesting the operations. Typically, thread-safe instantiation
shares the same virtual server client 30 between multiple
simultaneous execution of system calls. The use of the shared
resource, such as the virtual server client 30, is coordinated,
so that the execution of one operation does not impact the
execution of other operations. In one embodiment of the
thread-safe instantiation, the application programs 25 can
instantiate multiple commands (or operations) via the instan-
tiator 42. For example, the application programs 25 may
invoke multiple “ropen” system calls that are directed to one
or more target servers 15. The “ropen” system call is received
by the instantiator 42 in the virtual server client 30. The
instantiator 42 then distributes the “ropen” abstract system
call to each of the virtual server agents associated with the
target servers, so that multiple “ropen” calls can be executed
simultaneous by the target servers 15.

In one embodiment, the instantiator 42 is implemented as a
software library that provides routines that represent the
abstract system calls. One particular implementation of the
software library is called “libnc.” Libnc is a “network-aware”
library that is analogous to the standard C library. The Libnc

US 9,100,283 B2

9

library supports the network aware application programs 25
by instantiating the abstract system calls generated by the
application programs 25.

In one embodiment, the instantiator 42 determines to
which virtual server agents 35 an abstract system call should
be directed. The instantiator 42 identifies target servers 15 by
finding the target server identifiers specified in the abstract
system call. The target server identifier may include a path
name, which in turn may include a host name or a network
address (e.g., IP address) for the server. The target server 15
may also be identified by server names explicitly stated in a
file which is to be run on specific named servers. Alterna-
tively, the server identity may be inferred from a subset of
servers or a group of servers (e.g., a group of Linux servers) to
which the target server 15 belongs.

Before transmitting the abstract system call to the virtual
server agents 35, the instantiator 42 can also specify the
priority, CPU utilization, and memory utilization of the sys-
tem call for the target servers 15, so that the identified target
server 15 platforms can perform the requested services as
specified by the virtual server client 30. Once the abstract
system call has been instantiated, it is sent to an encryptor 44
for further processing.

The encryptor 44 encrypts the abstract system call before
sending it to a transmitter 46 for transmission to the virtual
server agents 35. The encryptor 44 uses standard encryption
protocols and algorithms to secure communication between
the virtual server client 30 and the virtual server agents 35.
Examples of standard encryption protocols include, but are
not limited to, SSL. (Secure Sockets Layer), Kerberos, and
Shared Secret protocols. SSL. uses a public key to encrypt
data. Kerberos assigns a unique key to each authorized user.
Standard encryption algorithm includes, but are not limited
to, DES (Data Encryption Standard), 3DES (Triple DES),
Blowfish, and AES (Advanced Encryption Standard).

The encryption protocol and algorithm used by the encryp-
tor 44 must be supported by each virtual server agent 35 with
which the virtual server client 30 will communicate. For
example, if the virtual server client 30 supports SSL, the
virtual server agent 35 must be able to support SSL for that
protocol to be used. If the virtual server client 30 supports
Kerberos, the virtual server agent 35 must also be able to
support Kerberos for that protocol to be used.

The transmitter 46 uses a network interface protocol, such
as TCP/IP or Ethernet, to send the abstract system call over a
network to the virtual server agents 35. The transmitter trans-
mits the same abstract system call to each target virtual server
agent. In one embodiment, the transmitter 46 uses an IP
address to determine to which of the target servers 15 an
abstract system call should be sent. An IP address may be
directly included in the abstract system call or may be inferred
from a server identifier included in the abstract system call.
The virtual server agent 35 accepts the abstract system call
containing the IP address of the target server 15 associated
with that virtual server agent 35. Once the virtual server agent
35 receives the abstract system call, the virtual server agent 35
processes the abstract system call for execution on the target
server 15.

Referring to FIG. 3, each virtual server agent 35 includes
software modules that implement its functionality. These
modules include a receiver 50, which receives abstract system
calls from the virtual server client 30, and transfers the
abstract system calls to a decryptor module 52.

Before the user 10 can access the user’s management sys-
tem 20, the user 10 is authenticated to ensure that the user 10
is in fact the person he or she claims to be. The user 10 can be
authenticated in many ways. In one embodiment, the user 10

10

15

20

25

30

35

40

45

50

55

60

65

10

is authenticated by the operating system of the management
system 20 and the target servers 15 subsequently inherit the
user’s 10 identity. In another embodiment, SRP (Secure
Remote Password) or PKI Cryptography (X.509 Certificates)
is used to authenticate user 10. In yet another embodiment,
the Kerberos 5 system can be used to authenticate the user 10
by assigning a unique private key to the user 10.

The source identifier module 52 identifies the source
machine, e.g., the user’s management system 20. The source
identifier module 52 first determines the source machine
through a network address (e.g., [P address) that was submit-
ted to the virtual server agent 35 from the virtual server client
30 with the abstract system call and checks to see if the source
host is authorized.

By identifying the source machine, the source module 52
determines the security protocols to be used by the virtual
server agent 35 for encryption and decryption. In one embodi-
ment, the virtual server agent 35 can support different security
protocols. For example, the virtual server agent 35 can flex-
ibly support either SSL. or Kerberos based on the security
protocol of the incoming data from the virtual server client
30. Next, the abstract system call is sent to a decryptor 54,
which decrypts the abstract system call. From the decrypted
abstract system call, the user identifier module 55 identifies
the user 10 invoking the application programs 25 from the
source machine and verifies that the user 10 is authorized to
access the source machine.

After the user is identified by the user identifier 55, an
identity mapper 56 and an impersonator 58 provide additional
security measures as the user 10 tries to access the remote
target servers 15 from the user’s management system 20. The
identity mapper 56 optionally maps the authenticated user
(presented user) to another user (effective user) and locates a
local user identity on the target server 15 that corresponds to
the authenticated identity of the effective user. Through the
impersonator 58, the user 10 is impersonated on a remote
target server 15, so that if the effective user is identified and
exists as a local user on the remote target server 15, the user 10
takes on the local identity of the effective user and the per-
missions provided by that identity on the remote target server
15. Thus, the user’s 10 access to the remote target server 15 is
further restricted to the appropriate levels provided by the
permissions granted to the effective user’s local identity on
the remote server 15. For example, if the user 10 is authenti-
cated as “Joe” on the management system 20 and mapped to
an effective user “Jane”, local permissions of “Jane” will be
available to the user 10 on the remote target server 15. If
“Jane” does not exist on the remote target server 15, then the
user 10 will be given a guest account. In one embodiment, the
combination of the presented user and the role, which is
defined by Role Based Access Control (RBAC), is mapped to
an effective user. For example, user “Joe” having the role of a
junior administrator can be mapped to an effective user
named “junior administrator.” Another user “Bob” also hav-
ing the role of a junior administrator can be mapped to the
same effective user named “junior administrator.”

The effective user’s access for presented user 10 is further
restricted by an authorizer 60, which permits the user 10 to
perform predetermined actions or access predetermined
resources on a particular target server 15. This is achieved by
using Access Control Lists (ACLs) to manage the effective
user’s access to resources on the remote target servers 15. The
ACL informs the operating systems of the remote target serv-
ers 15 of the access rights of the effective user on specific
server resources, such as files or directories. For example, if
the user 10 is mapped to the effective user “junior adminis-
trator”, then the user 10 is only permitted to perform read-

US 9,100,283 B2

11

only commands on certain directories or files of a group of
remote target servers 15 and cannot effect any changes to the
target servers 15.

After the user is authorized, a translator 62 translates the
abstract system call into a standard operating system call that
is understandable and executable by the target server 15. The
translator 62 examines the abstract system call and identifies
a standard operating system specific system call that is analo-
gous to the abstract system call and is supported by the oper-
ating system running the associated target server 15. Once the
analogous standard system call is identified, the translator
changes the abstract system call to the standard system call.
This standard operating system call is forwarded to an execu-
tor 66 for execution on the target server 15.

Once the executor 66 receives a standard operating system
call, the executor 66 performs the services that are requested
by the standard system call. In one embodiment, the executor
66 is the operating system running on the target server 15. The
operating system examines system calls and carries out the
operations requested by the system call by, for example,
communicating with other applications running on the target
server 15.

An audit log 64 is maintained by each virtual server agent
35 to keep track of the names of the users and all the activities
performed by each user, and to troubleshoot server changes
and configuration errors. For example, the audit log 64 saves
information about the activities requested and performed by
authorized users, information about data, such as the system
calls and the results of the system calls, that were transferred
back and forth between the virtual server client 30 and the
virtual server agent 35, as well as all parameters associated
with the abstract system call. The content of the audit log 64
is then transmitted to a centralized aggregated log kept for all
of the virtual server agents 35.

A first example of security measures incorporated in an
embodiment of the virtual server implementation follows.
First, the user 10 logs into the management system and is
authenticated as “Joe” during the login process. This authen-
tication process can be achieved by using a known network
authentication server, such as NTLM, K5, AD, APM, NIS,
etc., depending on the operating system running on the man-
agement system 20. After the user “Joe” is authenticated in
the management system 20, the user “Joe” is authenticated for
the target servers 15 by inheriting the user “Joe” identity
through the management system 20.

Next, the user 10 enters a “Is” command, requesting a
listing of files on the remote target server 15A, through the
shell command program 25A on the management system 20.
The shell command program 25A generates an abstract sys-
tem call in response to the command and sends the abstract
system call to the virtual server client 30 to proceed with the
user’s 10 request. The virtual server client 30 examines the
security configuration of the abstract system call and encrypts
the system call using a shared secret key scheme with a
encryption algorithm, such as DES, 3DES, or Blowfish. Once
the abstract system call is encrypted, the system call is com-
municated across a network to the virtual server agent 35A of
the target server 15A.

When the virtual server agent 35A receives the abstract
system call, the target server’s 15A agent 35A attempts to
decrypt the message using the secret key shared with the
virtual server client 30. The virtual server agent 35A checks to
see if the user “Joe” is recognized as a local user on the target
server 15A through an effective user. If the user “Joe” is
recognized as a local user, then the virtual server agent exam-
ines the access control list to determine if the combination of
the user “Joe” 10, target server 15A, and the abstract system

10

15

20

25

30

35

40

45

50

55

60

65

12

call is allowed. If the combination is allowed, then the access
control list is used to determine whether any further restric-
tions apply to the user’s 10 access to the target server 15A.
The virtual server agent 35A executes the system call in
accordance with any security restrictions, encrypts the results
using the same-shared secret key. The results of the “Is”
command are sent back to the virtual server client 30, where
they are decrypted and displayed to the user.

In a second example of security measures incorporated in
an embodiment of the virtual server, the user 10 is authenti-
cated using of SRP or PKI Certificates. Once the user 10 is
authenticated the user 10 enters an “Is” command, requesting
a listing of files on the remote server 15A, through the shell
command program 25A on the management system 20. The
shell command program 25A generates an abstract system
callin response to the command and sends the abstract system
call to the virtual server client 30. The virtual server client 30
examines the security configuration of the abstract system
call and encrypts the abstract system call using public key
cryptography, standard encryption algorithms, such as DES,
3DES, or Blowfish, may be used for exchange of session key
between the virtual server client 30 and the target server agent
35A to establish a communication session between them.

After decrypting the abstract system call received by the
virtual server agent 35A, the virtual server agent 35A checks
to see if the user “Joe” is recognized as a local user on the
target server 15A through an effective user. If the user “Joe”
is recognized as a local user, then the virtual server agent 35A
examines the ACL to determine if the combination of the user
10, target server 15A, and the abstract system call is allowed.
If the combination is allowed, then the access control list is
used to determine whether any further restrictions apply to the
user’s 10 access to the target server 15A. The virtual server
agent 35A executes the system call in accordance with any
security restrictions, and encrypts the results using the estab-
lished session key. The results of the “Is”” command are then
sent back to the virtual server client 30, where they are
decrypted and displayed to the user.

A third example of security measures incorporated in an
embodiment of the virtual server implementation follows. If
the management system 20 has an existing Kerberos 5 (K5)
infrastructure in place, the user 10 can be authenticated by
entering a Kerberos password to the management system 20.
Once the user 10 is logged in as the authenticated user “Joe,”
the user 10 enters the “Is” command, requesting a listing of
files on the remote target server 15A, through the shell com-
mand program 25A on the management system 20. The shell
command program 25A generates an abstract system call in
response to the command and sends the abstract system call to
the virtual server client 30 to proceed with the user’s 10
request. The virtual server client 30 then sends the abstract
system call and a Kerberos ticket, which is retrieved from a
Kerberos Domain Controller (KDC) to the virtual server
agent 35A.

After the virtual server agent 35A receives the abstract
system call and the ticket, the virtual server agent 35A vali-
dates the abstract system call by verifying the ticket via the
IDC. Once validated, the virtual server agent 35A checks to
see if the user “Joe” is recognized as a local user on the target
server 15A through an effective user. If the user “Joe” is
recognized as a local user, then the virtual server agent exam-
ines the ACL to determine if the combination of the user “Joe”
10, target server 15A, and the abstract system call is allowed.
If the combination is allowed, then the access control list is
used to determine whether any further restrictions apply to the
user’s 10 access to the target server 15A. The virtual server
agent 35A executes the system call in accordance with any

US 9,100,283 B2

13

security restrictions, encrypts the results using a Kerberos
key. The results of the “Is” command are sent back to the
virtual server client 30, where they are decrypted and dis-
played to the user.

Referring now to FIG. 4, a method for managing multiple
servers as a single virtual server is described. First, in step
400, the system represents multiple servers as a single virtual
server. Next, in step 410, based on a user’s request for opera-
tions to be performed on target servers, the virtual server
client 30 receives an abstract systems call from an application
program 25. Finally, in step 420, the virtual server client
instantiates the abstract system calls and sends the abstract
system call to the virtual server agents 35 for execution.

FIG. 5 shows steps involved in instantiating an abstract
system call. First in step 422, the virtual server client 30
identifies the target servers 15 through target server identifiers
provided within the abstract system call. Once the target
servers are identified, in step 424, the abstract system call is
transmitted to the virtual server agents associated with the
identified target servers. The virtual server agents 35 prepare
the abstract system call for the target servers 15, so that the
abstract system call can be the executed on the target servers
15. For example, for the target server 15 A, the abstract system
calls are translated into standard MICROSOFT WINDOWS
NT/W2K specific system calls that are executable by the
operating system running on the target server 15A. Upon
completion of execution of the system call, in step 426, the
virtual server client 30 receives the results of the execution
from the virtual server agents 35.

In one embodiment, multiple commands generate multiple
system calls, which can be aggregated into a single high-level
abstract system call by an application program 25. For
example, if two commands, such as copy and change permis-
sion commands, are to be made to a target server 15A, the
abstract system calls carrying out these commands, such as
ropen, rread, rwrite, and rchmod system calls, can be aggre-
gated into one high-level abstract system call. When received
by the virtual server client 30, the virtual server client 30 can
disintegrate the high level abstract system call into the origi-
nal abstract system calls and transmit the abstract system calls
separately to virtual server agent 35. In another embodiment,
instead of disintegrating the high-level system call into the
original abstract system calls at the virtual server client 30, the
high-level abstract system call is received by a virtual server
agent 35, which in turn translates the high-level abstract sys-
tem call into separate operating system specific system calls
to be executed on the target server 15.

FIG. 6 is a screenshot showing a command being issued to
multiple servers through the management system 20. As
shown here, server names used as parameters for commands
are preceded by two slashed to distinguish them from a path
name, which is generally separated by a slash. For examples,
“//redhatbizl/etc” specifies the/etc path on the server named
“redhatbiz1.” Thus, as seen in the screenshot, to compare the
“/etc/hosts” file on two different servers, one named “redhat-
bizl,” and the other named “redhatbiz2,” the user 10 enters
the command “dift//redhatbizl/etc/hosts//redhatbiz2/etc/
hosts.”

Referring back to FIG. 1, in an alternative embodiment, the
user 10 manages the target servers 15 by executing and undo-
ing distributed server change operations across the target
servers 15 in a transaction safe-manner, using the virtual
server implementation described above. Distributed server
change operations request the operating systems of the target
servers 15 to update, delete, install, and/or copy server assets
and/or configuration file entries of the target servers 15.
Transaction-safe server change operations ensure that all of

10

15

20

25

30

40

45

14

the required steps of each server change operation are com-
pleted before the distributed server change operations are
deemed completed. Further, if an error occurs while perform-
ing the required steps on the target servers 15, any changes
made from these steps are undone, and values of the target
servers’ 15 assets and/or configuration entries are returned to
the values they had before execution of the server change
operations. In one embodiment, the application programs 25
can generate a transaction package that bundles an instruction
set and necessary server contents for the operating system of
each of the target servers 15 to carry out the server change
operations.

Referring to FIG. 7, in one embodiment, the configuration
manager 25B generates a transaction package 700 that
includes files or configuration file entries 705 (together
referred to as server objects), a parameter file 710, and an
instruction set 715 to carry out the server change operations
on one or more target servers 15 that are specified by an
external file, as requested by the configuration manager 25B.

In one embodiment, the instruction set 715 includes an
execution sequence of the server change operations provided
for the operating systems of the target servers 15 that carry out
the server change operations. If this information is not pro-
vided in the instruction set 715 in the transaction package
700, an external dependency graph 720 is accessed to provide
an execution sequence of the server change operations. For
example, the external dependency graph 720 can provide
information about directional relationships between server
objects. In particular, if NT-based program A is a prerequisite
for another NT-based program B, to successfully execute
programs A and B, program A must start before program B
and program B must stop before program A. Although the
sequence information is used to order the sequence of change
operations for the server objects that are specified in the
transaction package, the sequence information is also used to
add implied server object change operations for related server
objects, such as server objects that depend on and/or depend
from these specified server objects, that are not specified in
the transaction package. In particular, continuing from the
previous example, if the only change instruction provided in
a transaction package is to stop program A, the sequence
information adds the implied instruction to stop program B
and then stop program A based on the directional relationship
between programs A and B. Thus, the sequence information
from the dependency graph determines the sequences of
server change operations to be performed not only on the
specified server objects, but also on their related server
objects. If an error occurs while performing the service
change operations, the sequence information also causes the
server change operations to stop and to be reversed not only
on the specified servers, but also on the related server objects.

As described above, if the instruction set 715 provides the
sequence information for the server change operations, the
instruction set 715 overrides the sequence information pro-
vided by the dependency graph 720. Similar to the sequence
information provided by the dependency graph 720, the
instruction set 715 provides the information related to the
order in which the server change operations should be per-
formed. The related server objects of the specified server
objects are provided, so that the server change operations can
effect changes on the related server objects, as well as the
specified server objects. The instruction set 715 also provides
dependency information between types of servers. For
example, if an application server depends on a database
server, the sequence information provided in the instruction

US 9,100,283 B2

15

set 715 will instruct the execution of the database server
change operations before the execution of the application
server change operations.

In one embodiment, the instruction set 715 specifies server
change operations to occur on any of the four types of server
objects 705: primitive server objects, compound server
objects, abstract configuration server objects, and component
server objects. A primitive server object is an elemental server
object that serves as a basis for all other types of server
objects. For example, for Linux-based servers, primitive
server objects include, but are not limited to, files, directories,
Redhat Package Manager files, and configuration file entries
for text configuration files, such as the “inetd.conf” file. For
Solaris-based servers, primitive server objects include, but
are not limited to, files, directories, packages, patches, and
configuration files entries for configuration files, such as the
“inetd.conf” file. For MICROSOFT WINDOWS NT or
W2K-based servers, primitive server objects include, but are
not limited to, files, file ACLs, directories, directory ACLs,
application programs, hot fixes, the registry entries, registry
entry ACLs, COM/COM+ (component object model) catalog
entries, Metabase entries, users, accounts, and configuration
file entries for all configuration files, such as “.ini” files.

A compound server object is a server object containing
primitive server objects and other related compound server
objects. For example, an extended component object model
(COM+) object, an NT or W2K-based compound server
object, contains primitive server objects, such as a COM+
catalog entry, NT registry entries, and DLL files. In yet
another example, an Enterprise JavaBeans (EJB) object, a
compound server object, contains primitive server objects
including a Java Archive (JAR) file and multiple configura-
tion file entries. In another example, a server process is a
compound server object, containing primitive server objects,
such as configuration file entries (e.g., a permission entry, a
priority entry, a control signal entry), files, and executables.

An abstract configuration server object is a special type of
a primitive server object that represents an entry in a configu-
ration file via a corresponding entry in an abstract configura-
tion file, where mapping of a configuration file to a common
abstract configuration format is provided by a configuration
file-specific grammar. For example, in the MICROSOFT
WINDOWS N'T/W2K environment, configuration file entries
are stored in “.ini” files or XML configuration files. In the
UNIX environment, configuration file entries are stored in
text files such as “inetd.conf™ files or “httpd.cont”, or XML
configuration files.

To reconcile the difference between the configuration file
entry formats across different servers, a common abstract
configuration format is provided by normalizing configura-
tion file entries through a supported configuration file-spe-
cific grammar. By modeling each configuration file entry as
an abstract configuration file entry through this normalization
process, server change operations may be made based on the
normalized abstract configuration file entries. The change
operations requested by the abstract configuration file entries
are performed, and the changes are then communicated to the
actual configuration file entries. Thus, in this embodiment,
configuration file entries can be individually managed
through use of abstract configuration file entries, without
having to change the entire configuration file each time a
server change operation changes an individual entry. Con-
figuration file-specific grammars may be provided for numer-
ous systems, including SOLARIS, LINUX, MICROSOFT
WINDOWS NT4/W2K, Apache, WEBLOGIC, and WEB-
SPHERE.

10

15

20

25

30

35

40

45

50

55

60

65

16

A component server object is a sequenced collection of
server objects. For example, an NT Service Pack is a
sequenced collection of NT Hot Fixes to be applied in a
predefined order. Accordingly, a collection of predefined
related change operations can be effected in order through a
component server.

In addition to the constituencies of the instruction set 715
described above, the instruction set 715 specifies the server
change operations to be made across the target servers 15 on
a collection of predetermined server objects by communicat-
ing with the server objects (e.g., files or configuration file
entries 705), the dependency graph 720, and the parameter
file 710. Server change operations can be used to deploy or
copy files, directories, and software packages to the target
servers 15. Change operations can also be used to edit con-
figuration file entries 705 without having to log into each
target server 15. In one embodiment, the instruction set 715
provides the information needed by the target servers 15 and
their associated virtual server agents 35 to carry out the server
change operations. In one embodiment, the instruction set
715 provides a transaction context that is identified by begin-
transaction and end-transaction statements encapsulating the
server object change operations. After the begin-transaction
statement is made, the instruction set provides the necessary
information to perform the change operations requested by
the application programs 25.

The instruction set 715 also provides error-handling
instructions for the target servers and their associated virtual
server agents. In one embodiment, several types of errors are
available. Soft errors are available to alert the target servers
and their virtual server agents of a likelihood of occurrence of
an error during server change operations. Because no actual
error has occurred, the user 10 may ignore the soft errors and
continue with the execution of the server change operations.
Alternatively, the user 10 may instruct the virtual server
agents to explicitly undo all the changes made from the execu-
tion of the server change operations after reviewing the error
information returned by the soft errors.

Hard errors are available to notify the virtual server agents
of'an occurrence of an error during the performance of server
change operations on the target servers. In one embodiment,
the hard errors can be programmed to automatically trigger
undo operations to undo any of the changes made during the
execution of the server change operations. In another embodi-
ment, the hard errors can be programmed to abort the execu-
tion of the remainder of transaction package change opera-
tions. The hard errors are triggered by error conditions set
forth in the instruction set 715. These error conditions specify
that if certain conditions occur, the hard errors should be sent
to the target servers and their associated virtual server agents.

The instruction set 715 also includes prerequisite informa-
tion for the instructions. An example of this prerequisite infor-
mation can include, but are not limited to, the minimum set of
change operation instructions that must be specified in a
transaction package for its successful execution. For
example, to successfully add a COM+ component on the
target servers, instructions for adding the COM+ entry in the
catalog, the corresponding Registry entry, and the corre-
sponding DLL file must be specified in the transaction pack-
age. Another example of the prerequisite information can
include types of permissions needed to carry out the change
operations, minimum disk space required by the target serv-
ers 15, and the type of operating system required. In addition,
the prerequisite information can also include implicit instruc-
tions for hierarchical server objects. For example, to add a file
in the target servers, the parent directory for the file should

US 9,100,283 B2

17

exist in the target servers, so that the file can be created under
the specified parent directory in these servers.

In one embodiment, the instruction set 715 defines the
changes that need to be made on the server objects by using
named parameters, and later replacing the parameters with
actual values obtained from a parameter file 710. The virtual
server agents 35 receive the transaction package 700 on
behalf of their associated target servers 15, and replace the
named parameters with values obtained from the parameter
file 710. These named parameters are particularly useful
when performing server change operations on server objects
that are directed to multiple target servers 15, because the
named parameter representing the identity of each target
server can be replaced with the actual server identifiers by the
virtual server agents 35. For example, named parameters of
an instruction can reference a path name for a target server 15
that includes a host name or an IP address of the target server
15. These parameters are replaced with actual server identi-
fiers for each target server 15, as provided in the parameter
file(s) 710.

In one embodiment, the parameter file 710 can be either a
global parameter file or a host-specific parameter file. A glo-
bal parameter file contains parameters that are configured by
the user 10, thus the identical global parameter file is passed
to all target servers 15. A host specific parameter file contains
parameters that are specific to each of target servers 15, thus
the host specific parameter file is different for each of target
servers 15. Parameter values contained in the global param-
eter file are useful when copying the same server object to the
same destination on multiple target servers 15. Examples of
this type of parameter are the user’s name and password. For
parameter values contained in the host-specific parameter
file, the parameter values are resolved by each of the target
servers 15. Examples of these parameters are host names, and
path names of the target servers 15. In addition, there are
intrinsic parameters that are resolved through host environ-
ment variables on the target server. In one embodiment, one or
more parameter files 710 are associated with one or more
target servers. For example, for a Window-based target server,
“windir” and IP address are examples of host environment
variables that can be used to resolve intrinsic parameters
associated with one or more target servers and passed via the
transaction package 700.

Referring to FIGS. 1 and 7, in one embodiment, instead of
using abstract system calls to carry out server change opera-
tions generated by the application programs 25, a transaction
package 700 can be used to carry out these change operations
using an XML-based instruction set 715. To accommodate
both system call level commands and XML .-based instruction
sets, each virtual server agent 35 is divided into two parts. One
part of the virtual server agent 35 is an XML API that can
interpret the XML -based instruction set 715 contained in the
transaction package 700, and the other part of the virtual
server agent 35 is a system call API that can interpret abstract
system calls. Thus, when a virtual server agent 35 receives an
XML-based transaction package 700 through the virtual
server client 30, the XML-based instruction set 715 in the
transaction package 700 can be interpreted via the XML API.
In an alternative embodiment, the transaction package 700
can be implemented with a text-based instruction set 715. The
commands of the text-based instruction set 715 are translated
into abstract system calls that are in turn interpreted by the
system call APIL.

Below is an example of an XML .-based transaction pack-
age, named “Package.sub.—1.XML,” specifying a prerequi-
site, transaction context, compound server object, sequence,

10

15

20

25

30

35

40

45

50

55

60

65

18
and error handling information using an XML -based instruc-
tion set 715. Package.sub.—1.XML

<blpackage schema-version="2.0" created-date="02/12/03"
modified- date="02/22/02" revision="23"">
<name>
name of the blpackage
</name>
<description>
description of the package
</description>
<source type="host”>web-demol</source>
<!-- default parameters -->
<param name="$APP_ PATH"> c:.backslash.program
files.backslash.app </param>
<param-file>foo.params<- ;/param-file>
<applies-to>
<condition>
<os>“$(0s) = Windows </os>
<os-version>$ (os-version) > 5</os-version>
<service-pack>2</- service-pack>
</condition>
</applies-to>
<!-- requires the following items before we deploy this package -->
<depends>
<condition>
<application>SQL server</application>
<version>$(version) = 8.0 </version>
</condition>
</depends>
<!-- failure conditions if the following exit on target -->
<Faillf>
<ErrorLevel <4 />
</Faillf >
<transaction id="0">
<command id = “1005”
undo="net start w3svc”>net stop w3sve</command>
<service action="add” refid="1003" key="RSCDsvc”>
<depends>
<file refid=*1002"/>
</depends>
</service>
<command id = “1006”
undo="net stop w3svc’>net start w3sve </command>
<file action="add” key="%WINDIR%ado.dll” refid=*1001"/>
<file action="add” key="%WINDIR%/System32/svchost.cxe”
refid="1002" />
<assets>
<file id="1001">
<name>ado.dll</name>
<source>0</source>
<attributes>2</attributes>
<created-date>02/12/03</created-date>
<modified-date>02/22/03</modified-date>
<owner></owner>
<group>0</group>
<acl key="%WINDIR%ado.dll”
owner="“BUILTIN.backslash. Administrators™>
<ace action="add” id="1313">web admins</ace>
<acemode>0</acemode>
<aceflags>3</aceflags>
<acemask>1179817</acemask>
<ace action="add” id="1314">dbas</ace>
<acemode™>1</acemode>
<aceflags>3</aceflags>
<acemask>2032127</acemask>
<Jacl>
</file>
<file id="1002">
<name>svchost.exe</name>
<source>0</source>
<attributes>2</attributes>
<created-date>02/12/03</created-date>
<modified-date>02/22/03</modified-date>
<owner></owner>
<group>0</group>
<acl key="%WINDIR%ado.dll”
owner="“BUILTIN.backslash. Administrators™>
<ace action="add” id="1313">web admins</ace>
<acemode>0</acemode>

US 9,100,283 B2

19

-continued

<aceflags>3</aceflags>
<acemask>1179817</acemask>
<ace action="add” id="1314">dbas</ace>
<acemode™>1</acemode>
<aceflags>3</aceflags>
<acemask>2032127</acemask>
<Jacl>
</file>
<service id="1003" name="RSCDsvc"”>
<binary_ path>%WINDIR%/System32/
svchost.exe</binary_ path>
<name>RSCDsve</name>
<description></description>
<state>Stopped</state>
<runas>
<userid>$Tokenl</userid>
<pwd>$Token2</pwd>
</runas>
</service>
</assets>
</transaction>
</blpackage>
The Parameter file foo.params contains
$TOKENTI as a parameter that corresponds to user id -
“R2D2.backslash.web-admins”
$TOKEN? as a parameter to password for
R2D2.backslash.web-admins - “c3-po”

In this example, the <blpackage schema> tag denotes the
beginning of the instruction set 715. The <name>, <descrip-
tion> and <source type> tags respectively provide the pack-
age name, description, and source server, in this example
“web-demol,” server, from where the package was created.
The <param> tag is use to specify location, in this example
“c:.backslash.program files.backslash.app”, of parameters
having the name of “SAPP_PATH” within the package 700,
while <param-file> tag is used to specify an external param-
eter file 710 called “foo.params”. In the prerequisite section,
which is introduced with the <applies-to > tag, the MS Win-
dows operating system, version greater than 5 and with ser-
vice pack 2, is specified as a prerequisite to carry out this
instruction set. Also in the prerequisite section, the
<depends> tag, indicates that SQL Server, version 8, is a
pre-requisite for the package. The error handling information,
which is introduced with the <FaillF> tag, specifies that the
server operations should fail if error level falls below 4.

The <transaction id="“0"> tag introduces the set of change
operations requested, and any dependency information for
the specified server change operations. The execution
sequence information for the server change operations is
provided under the <depends> tag. In this example, the order
of the operations, —stop w3svc, add service RSCDsvec, start
w3svc, add file ado.dll, and add file svchost.exe, would occur
in the following order: stop w3svc, add file svchost.exe, add
service RSCDsvc, start w3svce, and add file ado.dll.

The server assets that are being affected by the server
change operations are specified under the <assets> tag. This
example has three assets—two files, id=1001 and id=1002,
and one service, id=1003. Each file has a corresponding
nested File ACL having the <acl key> tags.

The parameter file 710, “foo.params™ has two parameters
that are used in the transaction package 700, named as
“$TOKEN1” and “$TOKEN2”. Instead of passing physical
values directed to each target server, the named parameters
are sent, and are resolved by the parameter file 710 when the
parameter file 710 substitutes the actual values that are spe-
cific for each target servers 15 for the named parameters. As
shown in this example, these values can be a path for a
collection of server objects (e.g., files), a user name, or a

10

15

20

25

30

35

40

45

50

55

60

65

20

password. In this example, the first parameter, $TOKEN1,
corresponds to the user name “R2D2.backslash.web-ad-
mins”, and the parameter $TOKEN 2 corresponds to the
password “c3-po.”

In one embodiment, multiple transaction packages can be
aggregated into a transaction project 725. The transaction
project 725 coordinates the transaction packages 700 and
their server change operations, so that each server change
operation can be executed in a transaction safe manner. Below
is an example of an XML transaction project 725 containing
a transaction package named “BLPkg_web.XML,” directed
to six web servers, a transaction package named “BLPkg_ap-
p-XML,” directed to two application servers, and a transac-
tion package named “BLPkg_db.XMI.,” directed to two data-
base servers:

<PROJECT>

<BLPkg>
<Name>BLPkg_ web. XML</Name>
<Hosts>Web Serverl</Hosts>
<Hosts>Web Server2</Hosts>
<Hosts>Web Server3</Hosts>
<Hosts>Web Serverd</Hosts>
<Hosts>Web Server5</Hosts>
<Hosts>Web Server6</Hosts>

</BLPkg>

<BLPkg>
<Name>BLPkg_ app.XML</Name>
<Hosts>App Serverl</Hosts>
<Hosts>App Server2</Hosts>

</BLPkg>

<BLPkg>
<Name>BLPkg_ db.XML</Name>
<Hosts>Db Serverl</Hosts>
<Hosts>Db Server2</Hosts>

</BLPkg>

</PROJECT>

In this example, first, the package “BLPkg_web. XML is
to be executed on six web servers named Web Serverl
through Web Server6, the package “BLPkg_app. XML is to
be executed on two application servers, and the package
“BLPkg_db.XML” is to be executed on two database servers.

The configuration manager 25B, or any of the application
programs 25, prepares the transaction package 700 and
instructs the virtual server client 30 to pass the package 700 to
the virtual server agents 35 associated with the target servers.
After receiving the transaction package 700, the virtual server
agents 35 unpack the package 700 and execute the operations
on their associated target servers 15. A method for achieving
this is shown in FIG. 8.

In Step 800, Configuration manager 25B checks the pre-
requisite information of the requested change operations.
Examples of the prerequisite information include checks
related to integrity and completeness of package such as
prompting for user name and password if required, making
sure simple dependencies are resolved, and making sure the
corresponding files are in the package.

After the prerequisites are checked in step 800, in step 810,
the configuration manager 25B checks for the sequence infor-
mation setting forth the execution order of the requested
change operations in the package’s instruction set 715. If the
sequence information is not provided in the instruction set
715, the configuration manager 25B accesses the external
dependency graph 720 to obtain the sequence information.
After completion of step 810, in step 815, the configuration
manager 25B transfers the package 700 and the associated
files and parameter files to the virtual server agents 35 via the
virtual server client 30.

US 9,100,283 B2

21

In one embodiment, the virtual server agent 35 receives the
completed transaction package 700 via the virtual server cli-
ent 30. On the virtual server agent 35, in step 820, the named
parameters are substituted with actual values. The virtual
server agent 35 then executes the server change operations
specified in the transaction package for its associated target
server 15. In another embodiment, instead of transporting the
completed transaction package 700, the virtual server client
30 may transport only the parameter file 710 and the instruc-
tion set 715, without the actual files or any of the server
objects, to the virtual server agent 35, in case the user 10
optionally elects to proceed with a dry run. The dry run
provides an additional set of tests to see if the instruction set
715 can be carried out by the recipient virtual server agent 35
before making any changes on the target server 15. After the
virtual server agent 35 receives a partial transaction package
700 from the virtual server client 30, in step 820, the param-
eters are substituted with actual values as provided in the
parameter file 710. After completing the dry run, the configu-
ration manager 25B can transfer the entire package 700 to the
virtual server agents 35 via the virtual server client 30 for
actual execution.

Before executing the operations on each target server 15, in
step 835, the agent updates an undo log. The undo log, which
is maintained for each target server, records the executed
operations, and tracks the changes made by these operations,
so that if an error occurs while executing the servers change
operations, the operations can be undone as recorded in the
undo log. This can be achieved by tracing back the steps
performed during the server change operations using the
undo log records. In one embodiment, the undo log is identi-
cal in structure to the transaction package, but with the param-
eter files arranged in reverse order and the change operations
recorded in reverse order. Finally in step 840, the server
change operations are executed on the target servers 15.

Referring now to FIG. 9, a method for executing and undo-
ing server change operation in a transaction safe manner is
described. In step 900, one or more application programs 25
generate and specify change operations using a transaction
package 700. Different types of server objects and corre-
sponding target servers 15 are supported through the instruc-
tion set provided in the transaction package 700. Next, in step
910, the application program specifies the target server(s) to
which the server change operations are directed. In step 920,
the application program specifies the parameter file that pro-
vides parameters and their corresponding values defined for
each of the target servers, and places this information in the
transaction package 700. In step 930, the server client 30
sends the server change operation from the application pro-
gram 25 to the virtual server agents 35 on the target servers 15.
In step 940, the target servers 15 execute the server change
operations in a transaction-safe manner.

Configuration Manager

Referring now to FIG. 10, the configuration manager 25B
is an exemplary application program 25 that tracks changes
and compliance and configures target servers by generating
and deploying a transaction package 700. The configuration
manager 25B provides a method and system for configuring
different servers using a variety of software modules, such as
abrowser 1000, a template 1010, a recorder 1020, a reference
model 1030, a comparator 1040, and a corrector 1050.

The browser 1000 browses server objects in different serv-
ers in real time, to examine the current configuration of the
server objects contained inside of the servers 15. First, the
user selects a server he/she wishes to browse. Through brows-
ing, a collection of server object identifiers that identify each
server object are selected and entered into the template 1010.

10

15

20

25

30

35

40

45

50

55

60

65

22

Alternatively, instead of building the template 1010 from
browsing, the template 1010 may be imported from an exter-
nal vendor. The template 1010 may also be created by includ-
ing one or more previously defined templates. In one embodi-
ment, the template 1010 is an abstract template that identifies
server objects contained in a server. For example, if an
Apache server contains files, and configuration file entries, an
Apache server template 1010 contains identifiers that are
sufficient to identify the files and configuration file entries of
the Apache server. After identifying server objects on the
template 1010, values of these identified server objects are
recorded to configure servers on the network.

In one embodiment, the recorder 1020 takes a snapshot of
values (e.g., attributes) associated with a collection of server
objects. In another embodiment the recorder 1020 takes a
snapshot of values of the server objects identified in the tem-
plate 1010. The values may come from any of the servers
browsed by the browser. Alternatively, the values may come
from a selected server, also referred to as a gold server.
Examples of the values (or attributes) of files recorded in the
snapshots include, but are not limited to, file names, sizes,
permissions, owners, creation dates, modification dates, and
versions. Examples of directory attributes (or values)
recorded in snapshots are directory locations, permissions,
creation dates, and modification dates. Examples of registry
entry attributes recorded in snapshots are field names, and
corresponding values.

In one embodiment, the recorded values or snapshot results
of the gold server are used to derive baseline values and
compliance ranges in the reference model 1030. In another
embodiment, instead of creating the reference model, the
snapshot results can be directly used to track changes, con-
figure existing servers and provision new servers on the net-
work. Snapshot results record a configuration of a server at a
point in time, thus they cannot be changed. However, the
reference model 1030 can be edited to represent the reference
implementation for compliance or provisioning purposes.

For example, when the snapshots of the gold server are
taken by the recorder 1020, the values collected in the snap-
shots are saved in the reference model 1030. Based on the
values of the gold server, the reference model 1030 can pro-
vide information, such as baseline values and compliance
ranges, for use by other servers in the network to identity their
drift in comparison to the gold server. The baseline values
provide basis for configuration of other servers. The compli-
ance ranges are ranges of acceptable configuration values that
are acceptable for other servers for these servers to be in
compliance. Alternative to creating a reference model 1030,
the reference model 1030 may be an imported reference
model that was created by an external vendor. Also, the ref-
erence model 1030 may include one or more previously
defined reference models. Subsequently, the comparator
1040 compares a server to the reference model 1030 to track
changes and track compliance in the server.

In another example, a snapshot of a current configuration
of a server captured at an arbitrary point in time can be
compared against a live-version of the captured server to track
changes in the captured server. The configuration of a server
can include explicitly selected server objects that are on the
server or implicitly selected server objects provided through
the template 1010.

In yet another example, the snapshot results of recurring
snapshots of a server taken at scheduled time intervals (e.g.,
daily, weekly, etc.) can be used to track changes in the cap-
tured server. In this example, the first snapshot of the server
serves as a baseline, so that for subsequent snapshots, only the
changes against the baseline are saved in the snapshot results.

US 9,100,283 B2

23

Thus, any snapshot result taken during these time intervals
can be reconstructed to view its entire configuration and
content by combining the baseline with the incremental
changes saved in the snapshot result. Moreover, the incre-
mental changes show changes occurred in the configuration
of'the server over a period of time for the user to analyze the
changes of this particular server. Subsequently, the compara-
tor 1040 compares a live-version of the server to the baseline
snapshot to track and save only changes on the server.

In one embodiment, two live servers can be compared
against each other without the snapshots or the reference
model 1030, on an ad-hoc basis. In this embodiment, the user
10 may explicitly select server objects that are commonly
shared between the two live servers so that the comparator
1040 can compare the values of the sever objects between
these servers. In another example of this embodiment, the
comparator 1040 compares the values of the server objects
that are implicitly provided by the template 1010.

After comparing the servers and identifying the discrepan-
cies present in the compared servers, the corrector 1050 cor-
rects the discrepancies in each target server. The corrector
1050 examines the discrepancies and generates server change
operations that request services from the operating systems
running on the target servers to correct these discrepancies.
As described previously, server change operations can be
presented to the servers as a transaction package 700 to
remove discrepancies and synchronize the target servers to
the reference model 1030 in a transaction-safe manner. Simi-
larly, in one embodiment, configuration updates to the target
servers can be made by the transaction package 700. In par-
ticular, the configuration manager 25B first makes all the
updates to the reference model 1030, which then packages the
discrepancies (introduced in the reference model) as updates
in the transaction package 700. The transaction package 700
is propagated to the target servers to synchronize them to the
updated reference model 1030.

The reference model 1030 can also be used to provision a
new server to ensure consistency in the configuration of the
servers in the network when a new server is added. For
example, an Apache reference model 1030 can be used to
provision anew Apache server so that the configurations of all
Apache servers in the network are consistent with each other.

In addition, both the reference model 1030 and snapshots
can be used restore a previous configuration of a serverin case
of'a disaster recovery. In particular, in case of a server failure,
this server can recover its most recent configuration and con-
tents by reconstructing the server’s configuration from the
snapshots taken over a period of time. With the reference
model 1030, in case of a server failure, the server can look to
the basis values of the gold server in the reference model 1030
and synchronize to this configuration to be in compliance
again.

FIG. 11 shows an exemplary method of tracking changes
and compliance, and correcting component as well as param-
eter-level changes across multiple servers. In step 1100, the
configuration manager 25B browses servers in the network to
obtain server asset and configuration (together referred to as
server objects) status information for each server. In the
browsing step 1100, selected server objects and their depen-
dent server objects are browsed in real time. In one embodi-
ment, live servers in the network and their stored server
objects can be browsed via a Graphic User Interface (GUI)
which presents the servers and server objects hierarchically.

Next, in step 1105, the configuration manager 25B, selects
identifiers of the browsed server objects to be in the template
1010. The identifiers can include any information about the
server object that is sufficient to identify the server object.

10

15

20

25

30

35

40

45

50

55

60

65

24

Next in step 1110, the configuration manager selects a gold
server, to provide a baseline configuration and configuration
ranges for other servers in the network. In step 1115 snapshots
of the values of the server objects identified in the template
that are present in the gold server are recorded in the reference
model 1030. Based on the values recorded in the reference
model 1030, in step 1115, the reference model establishes
compliance rules, such as the baseline configuration and the
compliance ranges. Alternatively, the snapshots of the values
are not recorded in the reference model. Instead, the snapshot
results of a server can be used to directly compare against a
live-version of this server to track changes.

In step 1120, the configuration manager 25B selects serv-
ers and their respective configuration parameters (also
referred to as server objects) to compare against the reference
model 1030. These servers can be selected from any live
servers on the network. Alternatively, these live-version serv-
ers canalso be directly compared against their own snapshots,
taken at an arbitrary point in a time, or taken over a specific
period, without the reference model 1030, to track compli-
ance and changes in these servers. The results of the compar-
ing step 1125 can be viewed item-by-item, by showing which
software (or server objects) are installed or not installed, or
host-by-host, by showing each server and the server objects
present on the server.

Finally, based on the discrepancies obtained during the
comparing step 1120, a correcting step 1130 fixes the servers
to be in compliance by synchronizing configuration of these
servers with the reference model 1030 or the snapshots.
Moreover, a newly added server can be provisioned to be
consistent with other servers by synchronizing this new
server to the reference model 1030.

Referring to FIG. 12, in one embodiment, the configuration
manager 25B can manage the same type of configuration
parameters (also referred to as server objects) across different
servers by specifying one or more categories for the param-
eters in templates. The template 1200 first specifies the
“server-type” category (e.g., application server category
1210, web server category 1215, and database server category
1220) to specify to what type of server each server object in
the network belongs, and then specifies the “parameter-type”
category (e.g., network parameters, capacity parameters,
availability parameters, performance parameters, security
parameters) to specify the parameter type to which each
server object belongs. Each server object in the template 1200
can be classified under one or more categories, sub-categories
and keywords. In one example, for security parameters, sub-
categories can include encryption type and authentication
type, and keywords can include “read-only” and constant.

Referring briefly to FIG. 13, an example of the system
described with reference to F1G. 12 is shown. In this example,
Internet 1300 and intranet 1305 are available to different
categories of servers 1215, 1210, 1220 through firewalls
1310. Web server category 1215 includes an IIS server 1215A
for intranet services and Apache Servers 1215B, 1215C for
the HTTP/FTP and Wireless/Video Internet services respec-
tively. Application server category 1210 includes servers run-
ning sales applications 1210A, on-line brokerage applica-
tions 1210B, and customer service application 1210C.
Database server category 1220 includes sales, trading, and
account databases 1220A, 1220B, and 1220C.

Referring again to FIG. 12, each server object in the tem-
plate 1200 is placed into a parameter category based on its
function and server type. For example, the server objects may
be grouped into network parameters 1330, capacity param-
eters 1335, availability parameters 1340, performance
parameters 1345, and security parameters 1350. The configu-

US 9,100,283 B2

25

ration manager 25B selects categorically related server
objects from each category of servers and stores them in the
template 1200. For example, all the security parameters in the
application server category 1210 and all the network param-
eters in the application server category 1210 are stored in the
template 1200.

Referring again to FIG. 13, for the web server category
1215, web server configuration parameters a, b, ¢, d, e are
respectively categorized as network parameters 1330, capac-
ity parameters 1335, availability parameters 1340, perfor-
mance parameters 1345, and security parameters 1350. For
the application server category 1210, application server con-
figuration parameters i, ii, iii, iv, v are respectively catego-
rized as network parameters 1330, capacity parameters 1335,
availability parameters 1340, performance parameters 1345,
and security parameters 1350. Similarly, for the database
server category 1220, database server configuration param-
eters I, 11, 111, IV, V are respectively categorized as network
parameters 1330, capacity parameters 1335, availability
parameters 1340, performance parameters 1345, and security
parameters 1350.

After categorizing all the server objects in the template
1200 by the server-type categories and the parameter-type
categories, a new template can be derived from the template
1200 to isolate the categorically related server objects across
the server categories and manage the configuration param-
eters as if they belonged to a single server. For example,
security configuration parameters of an individual web server
can be changed in concert with other security configuration
parameters for other web servers, as well as for application
servers and database servers. In the example shown in FIG.
13, for instance, web server network parameter a can be
changed in concert with network parameters i of the applica-
tion server category 1210 and parameter 1 of the database
server category 1220. Similarly, Web server capacity param-
eter b can be changed in concert with other capacity param-
eters ii of the application server category 1210 and II of the
database server category 1220. Likewise, correlated changes
of parameters can be performed for the availability param-
eters 1346, the performance parameters 1345, and the secu-
rity parameters 1350.

Referring to FIG. 14, an exemplary screenshot of a GUI-
based configuration manager 25B includes a module referred
to as an asset browser 1400, which allows a user 10 to browse
live remote target servers 15, and to manage and store fre-
quently used server assets (also referred to as server objects).
The asset browser 1400 is divided into two panes. The left
pane 1410 functions as either a Servers pane or a Depots pane,
depending on a tab 1420 selected by the user 10. The Contents
pane 1430, on the right side displays the contents of an item
selected in the Servers or the Depots pane.

In FIG. 14, the left pane 1410 displays the Servers pane
which shows a hierarchical depiction of the servers that the
user 10 manages. For example, the user 10 may arrange the
servers into groups based on geographical location and/or
operating system. Server groups are divided into the eastern
and western divisions of an enterprise, and within those
groups, another level of hierarchy for MICROSOFT WIN-
DOWS, UNIX, and LINUX-based servers. More specifically
in FIG. 14, within the servers in the Easter Division 1440, the
patches object 1460 in the “sun 2” server 1450 is selected. The
Contents pane 1430 shows the contents of the patches object
1460.

The Depots pane (not shown) can display central reposito-
ries of commonly accessed server objects (e.g., all files, soft-
ware to be deployed, and pointers to the content of the files
and software residing in other servers in the network). In

10

15

20

25

30

35

40

45

50

55

60

65

26

additions, the Depots pane stores scheduled tasks to be per-
formed, snapshots of server objects, Shell scripts, and trans-
action packages 700.

Example

In an overall example of operation of the configuration
manage, the configuration manager browses live servers on a
network, tracks changes and compliance in the servers by
comparing their server objects against a reference model or a
snapshot, and identifying any discrepancies from the refer-
ence model or the snapshot. By making records of the values
of the gold server’s server objects through a snapshot and
saving the results as a reference model, the reference model
may be used to audit other servers, to determine how configu-
rations of the other servers have changed from the reference
model. Alternatively, a server’s own snapshot can be taken
arbitrarily, or over a specific period of time to track changes in
the server, without using the reference model. In one
example, the server objects being compared in the audit pro-
cess are provided automatically by the configuration manager
via templates. In another example, the user may manually
select the server objects to compare. Additionally, the audit
process can be scheduled to track compliance over time.

After identifying server configuration discrepancies
present in the servers, the configuration manager 25B corrects
the discrepancies by generating a transaction package 700,
that contains server change operations to be performed on the
servers 15. The transaction package 700 bundles configura-
tion changes operations and corresponding instructions to be
deployed on remote target servers 15 to correct any discrep-
ancies that exist in server objects contained in those servers
15. With the transaction package 700, the configuration man-
ager 25B can install any types of server objects from a single
source to multiple locations. Similarly, the configuration
manger 25B can uninstall software, and undo server object
deployments on the remote target servers 15. As discussed
previously, certain values inside the transaction package 700
can be parameterized and subsequently replaced with real
values during the deployment of the transaction package 700
on the target servers 15, without changing the contents of the
transaction package 700 for each target server 15.

In one particular example, the configuration manager 25B
can be used to move a working MS SQL server database from
a gold server to multiple target servers 15, to duplicate the
changes made in this database to multiple servers. To achieve
this duplication, the user 10 copies the changes made on the
SQL Server database to the reference model, so that the
configuration manager 25B can later bundle these changes to
other instances of the same SQL Server database in the
remote target servers 15. The reference model and the remote
target servers 15 have the same initial installation of the SQL
Server database. The configuration manager takes a snapshot
of'the gold server to create a reference model that is used as a
baseline to compare the SQL Server databases between the
gold server and the target servers 15. The necessary database
changes are first made to the gold server. Next, the configu-
ration manager 25B creates a transaction package 700 to
bundle these changes to be deployed on the target servers 15.
The configuration manager 25B deploys the transaction pack-
age 700 to the virtual server agents 35 associated with the
target servers 15 to request these changes to be made on their
SQL Server databases.

In some embodiments, the functionality of the systems and
methods described above may be implemented as software on
one or more general purpose computers. In such an embodi-
ment, the software may be written in any one of a number of

US 9,100,283 B2

27

high-level languages, such as FORTRAN, PASCAL, C, C++,
LISP, JAVA, or BASIC. Further, the software may be written
in a script, macro, or functionality embedded in commercially
available software, such as EXCEL or VISUAL BASIC.
Additionally, the software could be implemented in an assem-
bly language directed to a microprocessor resident on a com-
puter. For example, the software could be implemented in
Intel 80.times.86 assembly language if it were configured to
run on an IBM PC or PC clone. The software may be embed-
ded on an article of manufacture including, but not limited to,
a “computer-readable medium” such as a floppy disk, a hard
disk, an optical disk, a magnetic tape, a PROM, an EPROM,
or CD-ROM.

Variations, modifications, and other implementations of
what is described herein will occur to those of ordinary skill
in the art without departing from the spirit and the scope of the
invention as claimed. Accordingly, the invention is to be
defined not by the preceding illustrative description but
instead by the spirit and scope of the following claims.

What is claimed is:
1. A method for receiving and executing, on one of a
plurality of servers, a system command from a software appli-
cation program, the method comprising:
receiving a system command from a command-line inter-
face of a server management system, the server manage-
ment system including the command-line interface, a
virtual server client, and virtual server agents, each vir-
tual server agent running on a respective server;

translating the system command to an abstract system
command, the abstract system command being indiffer-
ent to operating systems used by the servers running the
virtual server agents;

receiving, at the virtual server client, the abstract system

command; and

instantiating the abstract system command by:

identifying, by the virtual server client, a target server to
receive the abstract system command and a corre-
sponding virtual server agent associated with the tar-
get server,

transmitting the abstract system command to the corre-
sponding virtual agent for translation of the abstract
system command into an operating system-specific
system command for execution on the target server,

executing the operating system-specific system com-
mand under permissions determined as a function of
the target server, an identity of a user of the command-
line interface, and a role assigned to the identity, and

receiving execution results from the corresponding vir-
tual server agent.

2. The method of claim 1, wherein at least two of the
plurality of servers have different operating systems.

3. The method of claim 1 further comprising aggregating
the abstract system command and a second abstract system
command into a high-level abstract system command.

4. The method of claim 3 further comprising:

receiving, by the virtual server client, the high-level

abstract system command;
disintegrating, by the virtual server client, the high-level
abstract system command into the abstract system com-
mand and the second abstract system command; and

instantiating each of the abstract system command and the
second abstract system command.

5. The method of claim 3 further comprising:

receiving, by the virtual server client, the high-level

abstract system command; and

instantiating the high-level abstract system command.

10

20

30

35

40

45

50

55

28

6. The method of claim 1, wherein instantiating the abstract
system command further includes:

identifying at least two target servers to receive the abstract
system command, each with a corresponding virtual
server agent,

transmitting the abstract system command to the corre-
sponding virtual server agents, the abstract system com-
mand being translated into operating-system specific
commands appropriate for respective target servers; and

receiving execution results from the virtual server agents.

7. The method of claim 6, wherein the permissions used to
execute the respective operating-system specific commands
differ between a first server and a second server.

8. The method of claim 1 wherein identifying the target
server includes identifying the target virtual server agent to
receive the abstract system command in response to a server
identifier included in the abstract system command.

9. The method of claim 1, wherein the target server is a
group of physical servers represented by the virtual server
agent.

10. The method of claim 1 further comprising executing,
by the target server, the operating system specific system
command in a thread-safe manner.

11. The method of claim 1 further comprising:

maintaining an audit log to record the name of the user and
the abstract system command executed on the target
server.

12. The method of claim 1, further comprising:

encrypting, by the virtual server client, the abstract system
command; and

decrypting, by the virtual server agent, the encrypted
abstract system command.

13. The method of claim 1 further comprising modifying
an existing non-distributed application to function as a net-
work-aware application by substituting a non network-aware
system command with the abstract system command.

14. The method of claim 13, wherein the modifying
includes modifying a non-distributed Unix shell to function
as the network-aware application.

15. The method of claim 13, wherein the modifying
includes modifying a non-distributed scripting language to
function as the network-aware application.

16. A system comprising:

a first server running a server management system, the
server management system including a command-line
interface and a virtual server client, and

a plurality of servers communicatively connected with the
first server, each server running a respective virtual
server agent,

wherein the first server includes instructions that, when
executed by the first server, cause the first server to
perform operations including:
receiving a system command from the command-line

interface of the server management system,
translating the system command to an abstract system
command, the abstract system command being indif-
ferent to operating systems used by the plurality of
servers running the virtual server agents,
receiving, at the virtual server client, the abstract system
command, and
instantiating the abstract system command by:
identifying, by the virtual server client, a target server
of the plurality of servers to receive the abstract
system command and a corresponding virtual
server agent associated with the target server,
transmitting the abstract system command to the cor-
responding virtual agent for translation of the

US 9,100,283 B2

29

abstract system command into an operating sys-
tem-specific system command for execution on the
target server,

executing the operating system-specific system com-

mand under permissions determined as a function s

of the target server, an identity of a user of the
command-line interface, and a role assigned to the
identity, and

receiving execution results from the corresponding
virtual server agent.

17. The system of claim 16, wherein at least two of the
plurality of servers have different operating systems.

18. The system of claim 16, wherein the first server further
includes instructions that, when executed by the first server,
cause the first server to further perform operations including:

aggregating the abstract system command and a second

abstract system command into a high-level abstract sys-
tem command;

receiving, by the virtual server client, the high-level

abstract system command;
disintegrating, by the virtual server client, the high-level
abstract system command into the abstract system com-
mand and the second abstract system command; and

instantiating each of the abstract system command and the
second abstract system command.

19. The system of claim 16, wherein the first server further
includes instructions that, when executed by the first server,
cause the first server to further perform operations including:

30

aggregating the abstract system command and a second
abstract system command into a high-level abstract sys-
tem command;

receiving, by the virtual server client, the high-level

abstract system command; and

instantiating the high-level abstract system command.

20. The system of claim 16, wherein instantiating the
abstract system command further includes:

identifying at least two target servers of the plurality of

servers to receive the abstract system command, each
with a respective virtual server agent;

transmitting the abstract system command to the respective

virtual server agents, the abstract system command

being translated into operating-system specific com-

mands appropriate for respective target servers; and
receiving execution results from the virtual server agents.

21. The system of claim 16, wherein the target server is a
group of physical servers represented by the respective virtual
server agent.

22. The system of claim 16 wherein the first server further
includes instructions that, when executed by the first server,
cause the first server to further perform operations including
modifying an existing non-distributed application to function
as a network-aware application by substituting a non net-
work-aware system command with the abstract system com-
mand.

